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Abstract

Walker Ureña, Miguel Beltran; Sirakov, Slavchev Boyan (Advisor);
Sire, Yannick (Co-Advisor). Regularity Theory for Nonlinear
Partial Differential Equations. Rio de Janeiro, 2023. 63p. Tese
de doutorado – Departamento de Matemática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

We first examine Lp-viscosity solutions to fully nonlinear elliptic equa-
tions with bounded measurable ingredients. By considering p0 < p < d, we
focus on gradient-regularity estimates stemming from nonlinear potentials.
We find conditions for local Lipschitz-continuity of the solutions and conti-
nuity of the gradient. We survey recent breakthroughs in regularity theory
arising from (nonlinear) potential estimates. Our findings follow from – and
are inspired by – fundamental facts in the theory of Lp-viscosity solutions,
and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giu-
seppe Mingione (DKM2014). In the second part we prove partial regularity
of weakly stationary weighted harmonic maps with free boundary data on
a cone. As a starting point we take a look at the interior partial regula-
rity theory for intrinsic energy minimising fractional harmonic maps from
Euclidean space into smooth compact Riemannian manifolds for fractional
powers strictly between zero and one. Intrinsic fractional harmonic maps
can be extended to weighted harmonic maps, so we prove partial regularity
for locally minimising harmonic maps with (partially) free boundary data
on half-spaces, fractional harmonic maps then inherit this regularity.

Keywords
Fully nonlinear equations; Viscosity solutions; Potential estimates;

Gradient-regularity estimates; Harmonic maps; Free boundary; Partial
regularity;



Resumo

Walker Ureña, Miguel Beltran; Sirakov, Slavchev Boyan; Sire, Yan-
nick. Teoria da regularidade para equações diferenciais par-
ciais não lineares. Rio de Janeiro, 2023. 63p. Tese de Doutorado
– Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

Primeiro examinamos soluções de viscosidade Lp para equações elípti-
cas totalmente não lineares com ingredientes de fronteira mensuráveis. Ao
considerar p0 < p < d, focamos nas estimativas da regularidade dos gra-
dientes derivadas de potenciais não lineares. Encontramos condições para
Lipschitz-continuidade local das soluções e continuidade do gradiente. Exa-
minamos avanços recentes na teoria da regularidade decorrentes de esti-
mativas potenciais (não lineares). Nossas descobertas decorrem de – e são
inspiradas por – fatos fundamentais na teoria de soluções de Lp-viscosidade,
e resultados do trabalho de Panagiota Daskalopoulos, Tuomo Kuusi e Giu-
seppe Mingione (DKM2014). Na segunda parte provamos a regularidade
parcial de mapas harmônicos com peso fracamente estacionários com da-
dos de fronteira livre em um cone. Como ponto de partida, damos uma
olhada na teoria da regularidade parcial interior para mapas harmônicos
fracionários de minimização de energia intrínseca do espaço euclidiano em
variedades Riemannianas compactas e suaves para potências fracionárias
estritamente entre zero e um. Mapas harmônicos fracionários intrínsecos
podem ser estendidos para mapas harmônicos com peso, então provamos
regularidade parcial para mapas harmônicos minimizantes locais com da-
dos de fronteira (parcialmente) livres em meios-espaços, mapas harmônicos
fracionários então herdam essa regularidade.

Palavras-chave
Equações totalmente não lineares; Soluções de viscosidade; Estima-

tivas potenciais; Estimativas de regularidade de gradiente; Mapas harmô-
nicos; Fronteira livre; Parcial regularidade;
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List of Abbreviations

In what follows we put forward a list of notations used throughout this
text. This is mostly based on [(E2010), Appendix A.3].

Basic Notation:

(i) The d-dimensional Euclidean space is

Rd = {(x1, x2, . . . , xd) |xi ∈ R, ∀i = 1, 2, . . . , d},

with norms
∥(x1, x2, . . . , xd)∥ =

√
x2

1 + x2
2 + · · · + x2

d

and
∥(x1, x2, . . . , xd)∥∞ = max {|x1|, |x2|, . . . , |xd|} .

(ii) Open ball of radius r and center x0:

Br(x0) = {x ∈ Rd | ∥x− x0∥ < r} and Br = Br(0).

(iii) Lebesgue measure of a set O is denoted |O| or L(O).

Function Spaces and their norms: Let O ⊆ Rd.

(i) C(O) = {u : O → R |u continuous }.

C(O) = {u : O → R |u uniformly continuous }.

If O is a bounded set, C(O) is a Banach space with

∥u∥C(O) = sup
x∈O

|u(x)|.

(ii) Ck(O) = {u : O → R |u is k-times continuously differentiable }.

Ck(O) = {u ∈ Ck(O) |Dαu is uniformly continuous for all |α| ≤ k }
where α = (α1, α2, . . . , αd) ∈ Nd and

Dαu = ∂|α|u

∂xα1
1 · · · ∂xαd

1
, |α| = α1 + α2 + · · · + αd.



If O is a bounded set, Ck(O) is a Banach space with

∥u∥Ck(O) = sup
|α|≤k

sup
x∈O

|Dαu(x)|

We also denote,

C∞(O) =
∞⋂

k=0
Ck(O) and C∞(O) =

∞⋂
k=0

Ck(O).

(iii) We denote Cc(O), Ck
c (O), ..., the spaces comprised of C(O), Ck(O), ...

functions with compact support.

(iv) If 0 < γ ≤ 1, C0,γ(O) is the space of Hölder continuous functions with
exponent γ, or γth-Hölder continuous. That is,

C0,γ(O) =
{
u ∈ C(O) | ∃C < ∞, |f(x) − f(y)| ≤ C|x− y|γ, ∀x, y ∈ O

}
.

If γ ̸= 1 we can write Cγ = C0,γ, C0,1 is also called Lipschitz space.

In this case we have the seminorm

[u]γ,O = [u]C0,γ(O) = sup
x,y∈O
x ̸=y

{
|u(x) − u(y)|

|x− y|γ

}
,

and the γth-Hölder norm

∥u∥C0,γ(O) = ∥u∥C(O) + [u]γ,O.

In general, Ck,γ(O) is the γth-Hölder space

Ck,γ(O) =
{
u ∈ C(O) | ∥u∥Ck,γ(O) < ∞

}
,

where
∥u∥Ck,γ(O) =

∑
|α|≤k

∥Dαu∥C(O) +
∑

|α|=k

[Dαu]γ,O .

The γth-Hölder Spaces are also Banach Spaces.

(v) Lp(O) =
{
u : O → R |u is Lebesgue measurable and ∥u∥Lp(O) < ∞

}
,

where for 1 ≤ p < ∞

∥u∥Lp(O) =
( ∫

O
|u(x)|p dx

) 1
p

.



L∞(O) =
{
u : O → R |u is Lebesgue measurable and ∥u∥L∞(O) < ∞

}
,

where

∥u∥L∞(O) = ess sup
x∈O

|u(x)| = inf
{
C ∈ R

∣∣∣ |f(x)| ≤ C a.e. on O
}
.

(vi) p - BMO(O) is the pth-bounded mean oscillation space of functions f ∈
L1

loc(O), with norm

∥f∥BMO(O) = sup
Br(x)⊂O


(

−
∫

Br(x)
|f(y) − ⟨f⟩x,r |p dy

)1/p
 < ∞,

where ⟨f⟩x,r is the average value of f in Br(x):

⟨f⟩x,r = ⟨f⟩Br(x) = −
∫

Br(x)
f(y) dy = 1

|Br(x)|

∫
Br(x)

f(y) dy.

We also denote ⟨f⟩ = ⟨f⟩0,1 and m(f)(x) = sup
r>0

⟨f⟩x,r.

(vii) W k,p(O) =
{
u ∈ Lp(O) |Dαu ∈ Lp(O),∀α ∈ Nd s.t. |α| ≤ k

}
is the

Sobolev space.

We have the norm

∥u∥W k,p(O) =
 ∑

0≤|α|≤k

∥Dαu∥p
Lp(O)

1/p

in the case 1 ≤ p < ∞,

and we have
∥u∥W k,∞(O) = max

0≤|α|≤k
∥Dαu∥L∞(O).

We also denote Hk = W k,2.

(viii) W k,p
0 (O) is the closure of C∞

c (O) in W k,p(O), so

W k,p
0 (O) =

{
u ∈ W k,p(O)

∣∣∣ ∃ (un)n∈N s.t. un ∈ C∞
c (O) and ∥un − u∥W k,p(O) → 0

}
.



1
Introduction

In this thesis, we study two types of problems. The first one is driven by a
fully nonlinear elliptic partial differential equation (PDE), whereas the second
one concerns fractional harmonic maps whose target is a Lipschitz manifold.
The former is presented in Chapter 2 and is based on the joint work (PW2023)
with Edgard Pimentel. Here, we examine Lp-viscosity solutions for PDE with
bounded-measurable ingredients. We focus on gradient-regularity estimates.

The second model, which we develop in the Chapter 3, is mostly inspired
by (AHL2017) and (RM2022). It focuses on the regularity analysis of weighted
harmonic solutions on a half-space associated with an extension of a fractional
harmonic equation when the target is a cone. The strategy used on this second
problem relies on monotonicity formulas, compactness and energy decay for
minimizers of a modified Ericksen energy.

1.1
Main Results

In Chapter 2, we study the regularity of Lp-viscosity solutions to

F
(
D2u,Du, u, x

)
= f in Ω, (1-1)

where F : S(d) × Rd × R × Ω \ N → R, is a uniformly elliptic operator with
bounded-measurable ingredients, and f ∈ Lp(Ω) for p > p0. Here, Ω ⊂ Rd is
an open and bounded domain, N is a null set, S(d) ∼ R

d(d+1)
2 is the space

of symmetric matrices, and d/2 < p0 < d is the exponent such that the
Aleksandrov-Bakelman-Pucci (ABP) estimate is available for elliptic equations
with right-hand side in Lp, for p > p0.

We extend the gradient potential estimates reported in (DKM2014) to
operators with bounded-measurable coefficients depending explicitly on lower-
order terms. Our analysis heavily relies on properties of Lp-viscosity solutions
(CCKS1996, S1997); see also (WN2009).

Our first main result concerns the Lipschitz-continuity of Lp-viscosity
solutions to (1-1) and reads as follows.

Theorem 1.1 (Lipschitz continuity) Let u ∈ C(Ω) be an Lp-viscosity
solution to (1-1). Suppose Assumptions A1 and A2 are in force. Then, for every
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q > d, there exists a constant θ∗ = θ∗(d, λ,Λ, p, q) such that if Assumption A3
holds with θ ≡ θ∗, one has

|Du(x)| ≤ C

If
p(x, r) +

(∫
Br(x)

|Du(y)|q dy
) 1

q


for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant C > 0.

The potential estimate in Theorem 1.1 builds upon Święch’s W 1,q-
estimates to produce uniform estimates in B1/2. In fact, by taking d < q < p∗

in Theorem 1.1, with

p∗ := pd

d− p
, and d∗ = +∞,

one finds C = C(d, λ,Λ, p) such that

∥Du∥L∞(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥Lp(B1)

)
.

Our second main result establishes gradient-continuity for the Lp-
solutions to (1-1) and provides an explicit modulus of continuity for the gra-
dient. It reads as follows.

Theorem 1.2 (Gradient continuity) Let u ∈ C(Ω) be an Lp-viscosity
solution to (1-1). Suppose Assumptions A1 and A2 are in force. Suppose further
that If

p(x, r) → 0 as r → 0, uniformly in x. There exists 0 < θ∗ ≪ 1 such that,
if Assumption A3 holds for θ ≡ θ∗, then Du is continuous. In addition, for
Ω′ ⋐ Ω′′ ⋐ Ω, and any δ ∈ (0, 1], one has

|Du(x) −Du(y)| ≤ C

(
∥Du∥L∞(Ω′)|x− y|α(1−δ) + sup

x∈Ω
If

p

(
x, 4|x− y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

The strategy to prove Theorems 1.1 and 1.2 combines fundamental facts
in Lp-viscosity theory to show that a solution to (1-1) also solves an equation
of the form

F̃ (D2u, x) = f̃ in Ω,

where F̃ and f̃ meet the conditions required in (DKM2014). In particular, the
Lorentz borderline condition for gradient-continuity follows as a corollary.

Corollary 1 (Borderline gradient-regularity) Let u ∈ C(Ω) be an Lp-
viscosity solution to (1-1). Suppose Assumptions A1 and A2 are in force.
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Suppose further f ∈ Ld,1(Ω). There exists 0 < θ∗ ≪ 1 such that, if Assumption
A3 holds for θ ≡ θ∗, then Du is continuous.

We organize the remainder of this part as follows. Section 2.2 presents
some context on potential estimates, briefly describing their motivation and
mentioning recent breakthroughs. We detail our first main assumptions in
Section 2.3.1, whereas Section 2.3.2 gathers preliminary material. The proofs
of Theorems 1.1 and 1.2 are the subject of Section 2.4.

The theory developed on the Chapter 3 studies the regularity of intrinsic
harmonic maps related with fractional harmonic maps.

Given s ∈ (0, 1) and v : Rd → Rm, the fractional Laplace operator ∆su

is defined such that

(−∆)sv(x) = p.v.

(
γd,s

∫
Rd

v(x) − v(y)
|x− y|d+2s

dy

)

where

γd,s = s22sπ−d/2 Γ
(

d+2s
2

)
Γ(1 − s) ,

thus the maps v such that (−∆)sv = 0 are called fractional s-harmonic
functions. Those maps, on Riemannian manifolds with free or constrained
boundary were introduced by Da Lio and Rivière (DLR2011), who proved
that they are smooth on domains of one dimension. In recent years related
problems has been increasingly analyzed.

In particular, Caffarelli and Silvestre (CS2007) extend fractional har-
monic maps to weighted harmonic maps over the half space, mapping the
Dirichlet boundary condition to the Neumann condition.

In this part we focus on maps targeted on a semicone over Rm

Ck :=
{
y ∈ Rm / ym = |k − 1|1/2 |y′|

}
(1-2)

being y = (y1, . . . , ym) = (y′, ym) and y′ = (y1, . . . , ym−1). The cone Ck is just
a simple connected Lipchitz target that is not compact, but eventually we take
in account that away the origin, BR(0) ∩ Ck is a Lipchitz submanifold.

Consider a bounded admissible open subset Ω ⊆ Rd+1
+ , we denote

H1
s (Ω;Ck) =

{
u : Ω → Ck : u ∈ L2

s(Ω) and ∇u ∈ L2
s(Ω)

}
the weighted Sobolev space, where

L2
s(Ω) =

{
u ∈ L1

loc(Ω) : x(1−2s)/2
d+1 |u| ∈ L2(Ω)

}
.

On H1
s (Ω;Ck), the weighted energy is defined as
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Es(u,Ω) := 1
2

∫
Ω
xa

d+1|∇u(x)|2 dx (1-3)

where xd+1 > 0, s ∈ (0, 1) and a = 1 − 2s.
We say that u is a minimizing weighted harmonic map in Ω with respect

to the partially free boundary condition u(Ω) ⊆ Ck if

Es(u,Ω) ≤ Es(w,Ω)

for all w ∈ H1
s (Ω;Ck) such that w(x) ∈ Ck a.e. in Ω and spt(w − v) ⊆ Ω =

Ω ∪ ∂0Ω, being

∂0Ω :=
{
x ∈ ∂Ω ∩ ∂Rd+1

+ : B+
r (x) ⊆ Ω for some r > 0

}
.

The Euler-Lagrange equation derived is∫
Ω
xa

d+1 ∇u(x) • ∇ζ(x) dx = 0 (1-4)

for all ζ ∈ H1
s (Ω;Ck) such that ζ ∈ TuCk a.e. ∂0Ω and such that spt(ζ) ⊆ Ω and

denoting TuCk the tangent space to Ck at u. In other words, the Neumann-type
problem 

div
(
xa

d+1∇u
)

= 0 in Ω

xa
d+1

∂u

∂ν
⊥ TuCk in H1

s (∂0Ω;Ck),
(1-5)

in a weakly sense, is fulfilled.
As is described on (MSW2018) and (MPS2021), this u can be seen as an

extension of a fractional s-harmonic map v ∈ Ĥs(ω;Rm) (the set of functions
with finite fractional energy) as

u(x) = ve(x) = γd,s

∫
Rd

x2s
d+1v(z)(

|x′ − z|2 + x2
d+1

) d+2s
2
dz. (1-6)

Since for every v ∈ Ĥs(ω;Rm) we have, given ω ⊆ Rd a bounded open
set with Lipschitz boundary,

〈
(−∆)sv, φ

〉
ω

=
〈
xa

d+1
∂u

∂ν
,Φ
〉

∂0Ω

for all φ ∈ Hs
00(ω;Rm) (elements of compact support from Hs(ω;Rm)) and

Φ ∈ H1
0 such that Φ

∣∣∣∣
Rd×{0}

= ϕ, u solves the Dirichlet problem


div

(
xa

d+1∇u
)

= 0 in Ω

u = v on ∂0Ω.
(1-7)

Related regularity theory is developed on (MPS2021), where is proved a
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called ε-regularity theorem (Small Energy Hölder Regularity). It first proves
regularity for v (MPS2021, Theorem 4.1), and then the regularity of his
extension u = ve is a corollary (MPS2021, Corollary 4.2), but with the
condition u(Ω) ⊆ Sm.

A weighted harmonic function u with weight s is defined as a solution of

div
(
x1−2s

d+1 ∇u
)

= 0,

that we simply call it s-harmonic function, general regularity results were
presented and proved in (R2018, Section 2). In (AHL2017) the authors develop
regularity theory in the case s = 1/2 and with target on a whole cone. We
assume s ∈ (0, 1) and took mostly inspiration of (R2018, Roberts 2018) and
(RM2022, Roberts-Moser 2022) to develop some specific regularity results and
finally prove a ϵ-regularity result (Theorem 1.3).

The (R2018, Sections 3 and 4) takes as target a generalized smooth
compact Riemmanian manifold, studying minimizers of the analogous of the
energy (1-3), also called intrinsic fractional harmonic maps, been the critical
points of an energy whose first variation is a Dirichlet to Neuman map for the
harmonic map problem on a half-space (1-5).

Like in (AHL2017), the motivation on take Ck as our target are the
Erickson’s model suggested in 1985 and his potential applications on the study
of defects in liquid crystals. As is described on (E1991) and (AHL2017), if
Ω ⊂ R3, that previous model minimizes the energy

∫
Ω X(s, n) dx, where

X(s, n) = s2W (n) + κ5|∇s|2 + κ6|∇s • n|2 + ψ(s),

with W (n) equal to

κ1| div n|2 + κ2|n • curln|2 + κ3|n × curln|2 + (κ1 + κ4)
[
tr(∇n)2 − (div n)2

]
,

and a C2-potential ψ such that

lim
s→−1/2

ψ(s) = +∞, lim
s→1

ψ(s) = 1, ψ(0) = 0

and has a minimum at some s∗ ∈ (0, 1). Next (L1989) and (L1991) studied the
case κ1 = κ2 = κ3 = 1, κ4 = κ6 = 0 and κ5 = 6 and relate the minimizing on
the par (s, n) ∈ R×R2 with a minimizing harmonic map into a cone, recasting
the maps

u = (|k − 1|1/2s, sn)
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and
X(s, n) = |∇u| + ψ(k−1/2|u|),

so the image of u lie in the cone Ck defined in (1-2).
Depending on the smallness of the weighted density function

Θs(u, x0, r) := 1
rd+a−1 Es

(
u,B+

r (x0)
)
, (1-8)

we will prove the following regularity result:

Theorem 1.3 (A result on ϵ-regularity) Let d ≥ 2, a ∈ (−1, 1) and
u ∈ H1

s (Rd+1
+ ;Ck) be a minimizing of Es(u,Ω). Suppose B+

R (x0) satisfies
R ≤ 1 and ∂0B+

R (x0) ⊂ Ω. There exists an ε = ε(d, ∥u∥L2(Ω), a) > 0 and
a θ = θ

(
d, ∥u∥L2(Ω), a

)
∈ (0, 1) such that if

Θs(u, x0, R) ≤ ε,

then u ∈ C0,γ
(
B+

θR(x0)
)

for some γ = γ
(
d, ∥u∥L2(Ω), a

)
∈ (0, 1). In particular,

|u (x1) − u (x2)| ≤ C Θs (u, x0, R)
1
2 |x1 − x2|γ

for every x1, x2 ∈ B+
θR (x0) and a constant C = C

(
d, ∥u∥L2(Ω), a

)
.

In order to prove it, we present a sequence of lemmas organized as follows;
in the Section 3.2 we prove important monotonicity formulas around the
density function defined as (1-8), which are the main support of the estimates
that allow us prove Theorem 1.3. Next, in the Section 3.3, the first collection of
previous useful estimates and the Section 3.4 is focused on the principal energy
decay lemmas, from which we derive almost directly the Hölder regularity,
these lemmas include the so-called energy decay lemmas, highlighting Lemmas
3.17 and 3.18 as the main ones corresponding with border and interior decay
respectively. Finally, Proposition 1.3 is proved in Section 3.5.



2
Potential estimates for fully nonlinear elliptic equations with
bounded ingredients

2.1
Preliminaries

The regularity theory for viscosity solutions to (1-1) is a delicate matter.
Indeed, the first result in this realm is the so-called Krylov-Safonov theory. It
states that, if u ∈ C(B1) is a viscosity solution to

F (D2u) ≤ 0 ≤ G(D2u) in B1 (2-1)

and F andG are (λ,Λ)-elliptic operators, then u ∈ Cα
loc(B1), for some α ∈ (0, 1)

depending only on d, λ and Λ. In addition, one derives an estimate of the form

∥u∥Cα(B1/2) ≤ C ∥u∥L∞(B1) ,

where C = C(d, λ,Λ) (KS1980). Indeed, the regularity result in the Krylov-
Safonov theory concerns inequalities of the form

aij(x)∂2
iju ≤ 0 ≤ bij(x)∂2

iju (2-2)

where the matrices A := (aij)d
i,j=1 and B := (bij)d

i,j=1 are uniformly elliptic,
with the same ellipticity constants. The transition of those inequalities to
(2-1) comes from the fundamental theorem of calculus. Indeed, notice that
if F (0) = G(0) = 0, we get

∫ 1

0

d

dt
F (tD2u)dt = F (D2u) ≤ 0 ≤ G(D2u) =

∫ 1

0

d

dt
G(tD2u)dt.

By computing the derivatives above with respect to the variable t and setting

aij(x) :=
∫ 1

0
DMF (tD2u)dt and bij(x) :=

∫ 1

0
DMG(tD2u)dt,

one notices that a solution to (2-1) also satisfies (2-2).
If we replace the inequality in (2-1) with the equation

F (D2u) = 0 in B1 (2-3)
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and require F to be a (λ,Λ)-elliptic operator, solutions become of class C1,α

with estimates. Once again, α ∈ (0, 1) depends only on the dimension and the
ellipticity (TN1988, CC1995). Finally, if we require F to be uniformly elliptic
and convex (or concave) viscosity solutions to (2-3) are of class C2,α, with
estimates. This is known as the Evans-Krylov theory, developed independently
in the works of Lawrence C. Evans (E1982) and Nikolai Krylov (K1982).

The analysis of operators with variable coefficients, in the context of non-
homogeneous problems first appeared in the work of Luis Caffarelli (C1989).
In that paper, the author considers the equation

F (D2u, x) = f in B1 (2-4)

and requires F (M,x) to be uniformly elliptic. The fundamental breakthrough
launched in (C1989) concerns the connection of the variable coefficients op-
erator with its fixed-coefficients counterpart. To be more precise, the author
introduces an oscillation measure β(x, x0) defined as

β(x, x0) := sup
M∈S(d)

|F (M,x) − F (M,x0)|
1 + ∥M∥

.

Different smallness conditions on this quantity yield estimates in distinct
spaces. It includes estimates in C1,α, W 2,p and C2,α-spaces. Of course, further
conditions on the source term f must hold. In particular, it is critical that
f ∈ Lp(B1), for p > d.

An interesting aspect of this theory concerns the continuity hypotheses on
the data of the problem. For instance, the regularity estimates do not depend
on the continuity of f . Meanwhile, the notion of C-viscosity solution requires f
to be defined everywhere in the domain, as it depends on pointwise inequalities
(CL1993, CEL1984, CIL1992). Hence, asking f to be merely a measurable
function in some Lebesgue space is not compatible with the theory. See the
last paragraph before Theorem 1 in (C1989).

In (CCKS1996), the authors propose an Lp-viscosity theory, recasting
the notion of viscosity solutions in an almost-everywhere sense. In that paper,
the authors examine (1-1) and suppose the ingredients of the problem are in
Lp, for p > p0. The quantity d/2 < p0 < d appeared in the work of Eugene
Fabes and Daniel Stroock (FS1984). It stems from the improved integrability
of the Green function for (λ,Λ)-linear operators.

In (E1993), and before the formalization of Lp-viscosity solutions, the
quantity p0 appeared in the context of Sobolev regularity. In that paper, Luis
Escauriaza resorted to the improved integrability of the Green function from
(FS1984) to extend Caffarelli’s W 2,p-regularity theory to the range p0 < p < d.
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For that reason, p0 is referred to in the literature as Escauriaza’s exponent.
A fundamental study of the regularity theory for Lp-viscosity solutions

to (1-1) appeared in (S1997). Working merely under uniform ellipticity, the
author proves regularity results for the gradient of the solutions. In case p > d,
solutions are of class C1,α. Here, the smoothness degree depends on the Krylov-
Safonov exponent, and on the ratio d/p. However, in case p0 < p ≤ d, solutions
are only in W 1,q, where q → ∞ as p → d.

The findings in (S1997) highlight an important aspect of the theory,
namely: the smoothness of Du, in the range p0 < p < d, is a very delicate
matter. It is known that C1,α-regularity is not available in this context.

A program that successfully accessed this class of information is the one
in (DKM2014). Through a modification in the linear Riesz potential, tailored
to accommodate the p-integrability of the data, the authors produce potential
estimates for the Lp-viscosity solutions to (2-4). Ultimately, those estimates
yield a modulus of continuity for the gradient of the solutions.

In addition to uniform ellipticity, the results in (DKM2014) require an
average control on the oscillation of F (M,x). It also assumes f ∈ Lp(Ω) for
p0 < p < d. Under these conditions, the authors prove a series of potential
estimates. Those lead to local boundedness and (an explicit modulus of)
continuity for Du. Also, a borderline condition in Lorentz spaces follows: if
f ∈ Ld,1(Ω), then Du is continuous. Besides providing new, fundamental
developments to the regularity theory of fully nonlinear elliptic equations,
the arguments in (DKM2014) are pioneering in taking to the non-variational
setting a class of methods available before only for problems in the divergence
form.

2.2
Potential estimates: from the Poisson equation to fully nonlinear problems

Potential estimates are natural in the context of linear equations for
which a representation formula is available. For instance, let µ ∈ L1(Rd) be a
measure and consider the Poisson equation

−∆u = µ in Rd. (2-5)

It is well-known that u can be represented through the convolution of µ with
the appropriate Green function. In case d > 2, we have

u(x) = C
∫
Rd

µ(y)
|x− y|d−2 dy, (2-6)

where C > 0 depends only on the dimension.
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Now, recall the β-Riesz potential of a Borel measure µ ∈ L1(Rd) is given
by

Iµ
β (x) :=

∫
Rd

µ(y)
|x− y|d−β

dy.

Hence, the representation formula (2-6) allows us to write u(x) as the 2-Riesz
potential of µ. Immediately one infers that

|u(x)| ≤ C |Iµ
2 (x)| ,

obtaining a potential estimate for u. By differentiating (2-6) with respect to
an arbitrary direction e ∈ Sd−1, one concludes

|Du(x)| ≤ C |Iµ
1 (x)| .

That is, the representation formula available for the solutions to the Poisson
equation yields potential estimates for the solutions.

This reasoning collapses if (2-5) is replaced with a nonlinear equation
lacking representation formulas. Then a fundamental question arises: it con-
cerns the availability of potential estimates for (nonlinear and inhomogeneous)
problems for which representation formulas are not available.

The first answer to that question appears in the works of Tero
Kilpeläinen and Jan Malý (KM1992), and Neil Trudinger and Xu-Jia
Wang (TNWX2002), where the authors produce potential estimates for the
solutions of p-Poisson type equations. Taking this approach a notch up, and ac-
counting for potential estimates for the gradient of solutions, one finds the con-
tributions of Giuseppe Mingione (M2018, M2014, M2011, M2011a), Frank
Duzaar and Giuseppe Mingione (DM2011, DM2010, DM2010a, DM2009),
and Tuomo Kuusi and Giuseppe Mingione (KM2018, KM2016, KM2016a,
KM2014, KM2014a, KM2014b, KM2014c, KM2013, KM2013a, KM2012,
KM2012a, KM2011). Of particular interest to the present thesis is the anal-
ysis of potential estimates in the fully nonlinear setting, due to Panagiota
Daskalopoulos, Tuomo Kuusi, and Giuseppe Mingione (DKM2014).
More recent contributions appeared in the works of Cristiana De Fil-
ippis (CDF2022) and Cristiana De Filippis and Giuseppe Mingione
(FM2021, FM2022). See also the works of Cristiana De Filippis and col-
laborators (FS2022, FP2022).

In (DM2011) the authors examine an equation of the form

−div a(x,Du) = µ in Ω, (2-7)

where Ω ⊂ Rd is a Lipschitz domain, and µ ∈ L1(Ω) is a Radon measure
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with finite mass. Here, a : Ω × Rd → Rd satisfies natural conditions,
regarding growth, ellipticity, and continuity. Those conditions involve an
inhomogeneous exponent p ≥ 2, concerning the behavior of a = a(x, z) on
z. An oversimplification yields

a(x, z) = |z|p−2z,

for p > 2, turning (2-7) into the degenerate p-Poisson equation. In that paper,
the authors resort to the Wolff potential Wµ

β,p, defined as

Wµ
β,p(x,R) :=

∫ R

0

1
r

d−βp
p−1

(∫
Br(x)

µ(y)dy
) 1

p−1 dr
r
,

for β ∈ (0, d/p]. Their main result is a pointwise estimate for the gradient of
the solutions to (2-7). It reads as

|Du(x)| ≤ C

[∫
BR(x)

|Du(y)| dy + Wµ
1
p

,p
(x, 2R)

]
, (2-8)

whenever BR(x) ⊂ Ω, and R > 0 is bounded from above by some universal
quantity depending also on the data of the problem; see (DM2011, Theorem
1.1). A remarkable consequence of this estimate is a Lipschitz-continuity
criterium for u obtained solely in terms of the Wolff potential of µ. Indeed, if
Wµ

1
p

,p
(·, R) is essentially bounded for some R > 0, every W 1,p

0 -weak solution to
(2-7) would be locally Lipschitz continuous. We notice the nonlinear character
of the Wolff potential suits the growth conditions the authors impose on a(x, z),
as it scales accordingly under Lipschitz geometries.

The findings in (DM2011) also respect a class of very weak solutions,
known as solutions obtained by limit of approximations (SOLA); see (BG1989,
BG1992). This class of solutions is interesting because, among other things, it
allows us to consider functions in larger Sobolev spaces. Indeed, for 2 − 1/d <
p < d one can prove the existence of a SOLA u ∈ W 1,1

0 (Ω) to
−∆pu = µ in Ω

u = 0 on ∂Ω.

In addition, u ∈ W 1,q
0 (Ω) with estimates, provided q > 1 such that

1 < q <
d(p− 1)
d− 1 .

When it comes to the proof of (2-8), the arguments in (DM2011) are very
involved. However, one notices a fundamental ingredient. Namely, a decay rate
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for the excess of the gradient with respect to its average. Indeed, the authors
prove there exist β ∈ (0, 1] and C ≥ 1 such that∫

Br(x)
|Du(y) − (Du)r,x| dy ≤ C

(
r

R

)β∫
BR(x)

|Du(y) − (Du)R,x| dy, (2-9)

for every 0 < r < R with BR(x) ⊂ Ω. Here,

(Du)ρ,x :=
∫
Bρ(x)

Du(z)dz.

See (DM2011, Theorem 3.1). An important step in the proof of (2-9) is a
measure alternative, depending on the fraction of the ball Br in which the
gradient is larger than, or smaller than, some radius-dependent quantity.

Although the Wolff potential captures the inhomogeneous and nonlinear
aspects of a = a(x, z), a natural question concerns the use of linear potentials
in the analysis of (2-7).

Indeed, in (M2011) the author supposes a(x, z) to satisfy
λ|ξ|2 ≤ ⟨∂za(x, z)ξ, ξ⟩ ,

|∂za(x, z)| + |a(x, 0)| ≤ C,

|a(x, z) − a(y, z)| ≤ K|x− y|α(1 + |z|),

(2-10)

for every x, y ∈ Ω, z ∈ Rd, and ξ ∈ Rd, for some C, λ > 0, and α ∈ (0, 1].
Under these natural conditions, he derives a gradient bound in terms of the
(linear) localized Riesz potential Iσ

β(x,R), defined as

Iσ
β(x,R) :=

∫ R

0

1
rd−β

(∫
Br(x)

σ(y)dy
)

dr
r
,

for a measure σ ∈ L1(Ω), and β ∈ (0, 1], whenever BR(x) ⊂ Ω.
Indeed, the main contribution in (M2011) is the following: under (2-10),

solutions to (2-7) satisfy

|Du(x)| ≤ C

[∫
BR(x)

|Du(y)|dy + Iµ
1(x, 2R) +K

(
I|Du|

α (x, 2R) +Rα
)]
, (2-11)

where C > 0 depends on the data in (2-10). In case a = a(z) does not depend
on the spatial variable, K ≡ 0 and (2-11) recovers the usual potential estimate.

A further consequence of potential estimates is in unveiling the border-
line conditions for C1-regularity of the solutions to (2-7). See (DM2010); see
also (C2011) for related results. More precisely, the intrinsic connection be-
tween Lorentz spaces and the nonlinear Wolff potentials unlocks the minimal
conditions on the right-hand side µ that ensures continuity of Du.

In (DM2010), the authors impose p-growth, ellipticity, and continuity
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conditions on a = a(x, z), and derive minimal requirements on µ to ensure
that u ∈ C1(Ω) (DM2010, Theorem 3); see also (DM2010, Theorem 9) for the
vectorial counterpart of this fact.

They prove that if µ ∈ L
d, 1

p−1
loc (Ω), then Du is continuous in Ω. To get this

fact, one first derives an estimate for the Wolff potential Wµ
1
p

,p
(x,R) in terms

of the (d, 1/(p− 1))-Lorentz norm of µ. It follows from averages of decreasing
rearrangements of µ. See (DM2010, Lemma 2). Then one notices that such
control implies

Wµ
1
p

,p
(x,R) → 0

uniformly in x ∈ Ω, as R → 0; see (DM2010, Lemma 3).
The previous (very brief) panorama of the literature suggests that

whenever a = a(x, z) satisfies natural conditions – concerning p-growth,
ellipticity, and continuity – potential estimates are available for the solutions to
(2-7). Those follow through Wolff and (linear) Riesz potentials. Furthermore,
this approach comes with a borderline criterion on µ for the differentiability
of solutions. However, these developments appear in the variational setting,
closely related to the notion of weak distributional solutions.

Potential estimates in the non-variational case are the subject of
(DKM2014). In that paper, the authors examine fully nonlinear elliptic equa-
tions

F (D2u, x) = f in Ω, (2-12)
where F is uniformly elliptic and f ∈ Lp(B1). In this context, the appropriate
notion of solution is the one of Lp-viscosity solution (CCKS1996). Technical
aspects of the theory – including its very definition – rule out the case where
f ∈ L1(Ω), regardless of the dimension d ≥ 2. Instead, the authors work in
the range p0 < p < d, where d/2 < p0 < d is the exponent associated with the
Green’s function estimates appearing in (FS1984).

The consequences of potential estimates for fully nonlinear equations are
remarkable. In fact, if f ∈ Lp(Ω) with p > d, solutions to (2-12) are known to
be of class C1,α, with α ∈ (0, 1) satisfying

α < min
{
α0, 1 − d

p

}
,

where α0 ∈ (0, 1) is the exponent in the Krylov-Safonov theory available for
F = 0; see (S1997). It is also known that C1,α-regularity is no longer available
for (2-12) in case p < d. The fundamental question arising in this scenario
concerns the regularity of Du in the Escauriaza range p0 < p < d.

In (S1997), the author imposes an oscillation control on F (M, ·) with
respect to its fixed-coefficients counterpart and proves regularity estimates for
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the solutions in W 1,q(Ω), for p0 < p < d, for every

q < p∗ := pd

d− p
,

with d∗ := +∞. Meanwhile, the existence of a gradient in the classical sense,
or any further information on its degree of smoothness, was not available in
the p < d setting.

In (DKM2014) the authors consider Lp-viscosity solutions to (2-12),
with f ∈ Lp(Ω), for p0 < p < d. In this context, they prove the local
boundedness of Du in terms of a p-variant of the (linear) Riesz potential.
In addition, the authors derive continuity of the gradient, with an explicit
modulus of continuity. Finally, they obtain a borderline condition on f , once
again involving Lorentz spaces. In fact, if f ∈ Ld,1(Ω), then u ∈ C1(Ω).

The reasoning in (DKM2014) involves the excess of the gradient vis-a-
vis its average and a decay rate for this quantity. However, in the context of
viscosity solutions, energy estimates are not available as a starting point for
the argument. Instead, the authors cleverly resort to Święch’s W 1,q-estimates
and prove a decay of the excess at an initial scale. An involved iteration scheme
builds upon the natural scaling of the operator and unlocks the main building
blocks of the argument.

2.3
Technical preliminaries and main assumptions

This section details our assumptions and gathers basic notions and facts
used throughout this thesis. We start by putting forward the former.

2.3.1
Main assumptions

For completeness, we proceed by defining the extremal Pucci operators
P±

λ,Λ : S(d) → R.

Definition 2.1 (Pucci extremal operators) Let 0 < λ ≤ Λ. For M ∈
S(d) denote with λ1, . . . , λd its eigenvalues. We define the Pucci extremal
operator P+

λ,Λ : S(d) → R as

P+
λ,Λ(M) := Λ

∑
λi>0

λi + λ
∑

λi<0
λi.

Similarly, we define the Pucci extremal operator P− : S(d) → R as

P−
λ,Λ(M) := λ

∑
λi>0

λi + Λ
∑

λi<0
λi.
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A 1 (Structural condition) Let ω : [0,+∞) → [0,+∞) be a modulus of
continuity, and fix γ > 0. We suppose the operator F satisfies

P−
λ,Λ(M −N) − γ|p− q| − ω(|r − s|) ≤ F (M, p, r, x) − F (N, q, s, x)

≤ P+
λ,Λ(M −N) + γ|p− q| + ω(|r − s|),

for every (M, p, r) and (d, q, s) in S(d) × Rd × R, and every x ∈ Ω \ N . Also,
F = F (M, p, r, x) is non-decreasing in r and F (0, 0, 0, x) = 0.

Our next assumption sets the integrability of the right-hand side f .

A 2 (Integrability of the right-hand side) We suppose f ∈ Lp(B1), for
p > p0, where d/2 < p0 < d is the exponent such that the ABP maximum
principle holds for solutions to uniformly elliptic equations F = f provided
f ∈ Lp, with p > p0.

We continue with an assumption on the oscillation of F on x. To that
end, consider

β(x, y) := sup
M∈S(d)\{0}

|F (M, 0, 0, x) − F (M, 0, 0, y)|
∥M∥

.

We proceed with a smallness condition on β(·, y), uniformly in y ∈ B1.

A 3 (Oscillation control) For every y ∈ Ω, we have

sup
Br(y)⊂Ω

∫
Br(y)

β(x, y)pdx ≤ θp,

where 0 < θ ≪ 1 is a small parameter we choose further in the paper.

We close this section with a remark on the modulus of continuity ω

appearing in Assumption A1. For any v ∈ C(B1) ∩ L∞(B1) we notice that
ω(|v(x)|) ≤ C for some C > 0, perhaps depending on the L∞-norm of v.
Hence (∫

B1
ω(|v(x)|)pdx

) 1
p

≤ C.

This information will be useful when estimating certain quantities in Lp-spaces
appearing further in the work.
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2.3.2
Preliminaries

In the sequel, we introduce the basics of Lp-viscosity solutions, mainly
focusing on the properties we use in our arguments. We start with the definition
of Lp-viscosity solutions for (1-1).

Definition 2.2 (Lp-viscosity solution) Let F = F (M, p, r, x) be nonde-
creasing in r and f ∈ Lp(B1) for p > d/2. We say that u ∈ C(Ω) is an
Lp-viscosity subsolution to F = f if for every ϕ ∈ W 2,p

loc (Ω), ε > 0 and open
subset U ⊂ Ω such that

F (D2ϕ(x), Dϕ(x), ϕ(x), x) − f(x) ≥ ε

almost everywhere in U , then u − ϕ cannot have a local maximum in U . We
say that u ∈ C(Ω) is an Lp-viscosity supersolution to F = f if for every
ϕ ∈ W 2,p

loc (Ω), ε > 0 and open subset U ⊂ Ω such that

F (D2ϕ(x), Dϕ(x), ϕ(x), x) − f(x) ≤ −ε

almost everywhere in U , then u − ϕ cannot have a local minimum in U . We
say that u ∈ C(Ω) is an Lp-viscosity solution to F = f if it is both an Lp-sub
and an Lp-supersolution to F = f .

Although the definition of Lp-viscosity solutions requires p > d/2, the
appropriate range for the integrability of the data is indeed p > p0 > d/2,
as most results in the theory are available only in this setting. See, for
instance, (CCKS1996). For further reference, we recall a result on the twice-
differentiability of Lp-viscosity solutions.

Lemma 2.1 (Twice-differentiability) Let u ∈ C(Ω) be an Lp-viscosity
solution to (1-1). Suppose Assumptions A1 and A2 are in force. Then u is
twice differentiable almost everywhere in Ω. Moreover, its pointwise derivatives
satisfy the equation almost everywhere in Ω.

For the proof of Lemma 2.1, see (CCKS1996, Theorem 3.6). In what
follows, we present a lemma relating Lp-viscosity solutions to F = f with
equations governed by the extremal Pucci operators.

Lemma 2.2 Suppose Assumption A1 and A2 and are in force. Suppose further
that u ∈ C(Ω) is twice differentiable almost everywhere in Ω. Then u is an Lp-
viscosity subsolution [resp. supersolution] of (1-1) if and only if
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i. we have

F (D2u(x), Du(x), u(x), x) ≤ f(x)

[resp. F (D2u(x), Du(x), u(x), x) ≥ f(x)]

almost everywhere in Ω, and

ii. whenever ϕ ∈ W 2,p
loc (Ω) and u− ϕ has a local maximum [resp. minimum]

at x∗, then

ess lim inf
x→x∗

(
P−

(
D2(u− ϕ)(x)

)
− γ |D(u− ϕ)(x)|

)
≥ 0

[resp. ess lim sup
x→x∗

(
P+

(
D2(u− ϕ)(x)

)
+ γ |D(u− ϕ)(x)|

)
≤ 0].

For the proof of Lemma 2.2, we refer the reader to (S1997, Lemma 1.5).
We are interested in a consequence of Lemma 2.2 that allows us to relate the
solutions of F (D2u,Du, u, x) = f with the equation F (D2u, 0, 0, x) = f̃ , for
some f̃ ∈ Lp(Ω). This is the content of the next corollary.

Corollary 2 Let u ∈ C(Ω) be an Lp-viscosity solution to (1-1). Suppose A1
and A2 hold. Define f̃ : Ω → R as

f̃(x) := F (D2u(x), 0, 0, x).

If f̃ ∈ Lp(Ω), then u is an Lp-viscosity solution of

F (D2u, 0, 0, x) = f̃ in Ω. (2-13)

Proof. We only prove that u is an Lp-viscosity subsolution to (2-13), as the
case of supersolutions is analogous. Notice the proof amounts to verify the
conditions in items i. and ii. of Lemma 2.2.

Because u solves (1-1) in the Lp-viscosity sense, Lemma 2.1 implies it is
twice differentiable almost everywhere in Ω. Hence, the definition of f̃ ensures

F (D2u(x), 0, 0, x) ≤ f̃(x)

almost everywhere in Ω, which verifies item i. in Lemma 2.2.
To address item ii., we resort to Lemma 2.2 in the opposite direction.

Let ϕ ∈ W 2,p
loc (Ω) and suppose x∗ ∈ Ω is a point of maximum for u − ϕ. Since

u is an Lp-viscosity solution to (1-1), that lemma ensures that

ess lim inf
x→x∗

(
P−

(
D2(u− ϕ)(x)

)
− γ |D(u− ϕ)(x)|

)
≥ 0.

Therefore, item ii. also follows and the proof is complete. ■
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We also use the truncated Riesz potential of f . In fact, we consider its
Lp-variant, introduced in (DKM2014). To be precise, given f ∈ Lp(Ω), we
define its (truncated) Riesz potential If

p(x, r) as

If
p(x, r) :=

∫ r

0

(∫
Bρ(x)

|f(y)|pdy
) 1

p

dρ.

In case p = 1 we recover the usual truncated Riesz potential.
We proceed by stating Theorems 1.2 and 1.3 in (DKM2014).

Proposition 2.1 (Daskalopoulos-Kuusi-Mingione I) Let u ∈ C(Ω) be
an Lp-viscosity solution to

F (D2u, x) = f in B1.

Suppose Assumptions A1 and A2 are in force. Then there exists θ1 such that,
if Assumption A3 holds for θ ≡ θ1, one has

|Du(x)| ≤ C

If
p(x, r) +

(∫
Br(x)

|Du(y)|q dy
) 1

q


for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant C > 0.

Proposition 2.2 (Daskalopoulos-Kuusi-Mingione II) Let u ∈ C(Ω) be
an Lp-viscosity solution to

F (D2u, x) = f in Ω.

Suppose Assumptions A1 and A2 are in force. Suppose further that If
p(x, r) → 0

as r → 0, uniformly in x. Then there exists θ2 such that, if Assumption A3
holds for θ ≡ θ2, Du is continuous. In addition, for Ω′ ⋐ Ω′′ ⋐ Ω, and any
δ ∈ (0, 1], one has

|Du(x) −Du(y)| ≤ C

(
∥Du∥L∞(Ω′′)|x− y|α(1−δ) + sup

z∈{x,y}
If

p

(
z, 4|x− y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, γ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

For the proofs of Propositions 2.1 and 2.2, we refer the reader to
(DKM2014, Theorem 1.3). We close this section by including (S1997, Święch)’s
W 1,p-regularity result.

Proposition 2.3 (W 1,q-regularity estimates) Let u ∈ C(Ω) be an Lp-
viscosity solution to (1-1). Suppose Assumptions A1 and A2 are in force.
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There exists 0 < θ ≪ 1 such that, if Assumption A3 holds with θ ≡ θ, then
u ∈ W 1,q

loc (Ω) for every 1 < q < p∗, where

p∗ := pd

d− p
, and d∗ = +∞.

Also, for Ω′ ⋐ Ω, there exists C = C(d, λ,Λ, γ, ω, q, diam(Ω′), dist(Ω′, ∂Ω))
such that

∥u∥W 1,q(Ω′) ≤ C
(
∥u∥L∞(∂Ω) + ∥f∥Lp(Ω)

)
.

The former result plays an important role in our argument since it allows
us to relate the operator F (M, p, r, x) with F (M, 0, 0, x).

2.4
Proof of Theorems 1.1 and 1.2

In the sequel, we detail the proofs of Theorems 1.1 and 1.2. Resorting to a
covering argument, we work in the unit ball B1 instead of Ω. As we described
before, the strategy is to show that Lp-viscosity solutions to (1-1) are also
Lp-viscosity solutions to

G(D2u, x) = g in B1.

Then verify that G : S(d) × B1 \ N → R and g ∈ Lp(B1) are in the scope of
(DKM2014). More precisely, satisfying the conditions in Theorems 1.2 and 1.3
in that paper. We continue with a proposition.

Proposition 2.4 Let u ∈ C(B1) be an Lp-viscosity solution to (1-1). Suppose
Assumptions A1 and A2 are in force. Suppose further that Assumption A3
holds with θ ≡ θ, where θ is the parameter from Proposition 2.3. Then u is an
Lp-viscosity solution for

F (D2u, 0, 0, x) = f̃ in B9/10,

where f̃ ∈ Lp
loc(B1) and there exists C > 0 such that

∥∥∥f̃∥∥∥
Lp(B9/10)

≤ C
(
∥u∥L∞(B1) + ∥f∥Lp(B1)

)
.

Proof. We split the proof into two steps.

Step 1 - We start by applying Proposition 2.3 to the Lp-viscosity solutions
to (1-1). By taking θ in Assumption A3 such that θ ≡ θ, we get u ∈ W 1,q

loc (B1)
and

∥Du∥Lq(B9/10) ≤ C
(
∥u∥L∞(∂B1) + ∥f∥Lp(B1)

)
, (2-14)
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for some universal constant C > 0. Moreover, because u is an Lp-viscosity so-
lution to (1-1), Lemma 2.1 ensures it is twice-differentiable almost everywhere
in B1. Define f̃ : B1 → R as

f̃(x) := F (D2u(x), 0, 0, x).

Step 2 - Resorting once again to Lemma 2.1, we get that

f̃(x) = F (D2u(x), 0, 0, x) − F (D2u(x), Du(x), u(x), x) + f(x),

almost everywhere in B1. Ellipticity implies

∣∣∣f̃(x)
∣∣∣ ≤ γ |Du(x)| + ω (|u(x)|) + |f(x)| ,

for almost every x ∈ B1. Using (2-14), and noticing that one can always take
q > p, we get f̃ ∈ Lp

loc(B1), with
∥∥∥f̃∥∥∥

Lp(B9/10)
≤ C

(
∥u∥L∞(B1) + ∥f∥Lp(B1)

)
,

for some universal constant C > 0, also depending on p. A straightforward
application of Corollary 2 completes the proof. ■

Proposition 2.4 is the main ingredient leading to Theorems 1.1 and 1.2.
Once it is available, we proceed with the proof of those theorems.
Proof.[Proof of Theorem 1.1] For clarity, we split the proof into two steps.

Step 1 - Because of Proposition 2.4, we know that an Lp-viscosity solution to
(1-1) is also an Lp-viscosity solution to

F̃ (D2u, x) = f̃ in B9/10,

where
F̃ (M,x) := F (M, 0, 0, x),

and f̃ is defined as in Proposition 2.4. To conclude the proof, we must ensure
that F̃ satisfies the conditions in Proposition 2.1.

Step 2 - One easily verifies that F̃ satisfies a (λ,Λ)-ellipticity condition,
inherited from the original operator F . It remains to control the oscillation
of F̃ (M,x) vis-a-vis its fixed-coefficient counterpart, F̃ (M,x0), for x0 ∈ B9/10.

Because

F̃ (M,x) − F̃ (M,x0) = F (M, 0, 0, x) − F (M, 0, 0, x0),
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one may take θ ≡ θ1 in Assumption 3 to ensure that F̃ satisfies the conditions
in Proposition 2.1. Taking

θ∗ := min
(
θ1, θ

)
and applying Proposition 2.1 to u, the proof is complete. ■

The proof of Theorem 1.2 follows word for word the previous one, except
for the choice of θ∗ := min

(
θ2, θ

)
, and is omitted.



3
Intrinsic s-Harmonic maps with free boundary

3.1
Preliminaries

Lemma 3.1 (First variation of the energy) Let u : Ω → Ck be a mini-
mizer for (1-3). Then u satisfies

div
(
xa

d+1uDu
)

= xa
d+1|Du|2 (3-1)

in the distributional sense. In addition, let ξ ∈ C∞
0 (Ω,Rd+1) be such that

ξ(x′, 0) ⊂ Rd × {0}. Then,

0 = a
∫

Ω
xa−1

d+1ξd+1|Du|2dx+
∫

Ω
xa

d+1

(
|Du|2divξ − 2DuDξ ·Du

)
dx. (3-2)

Proof. The proof is standard and follows along the general lines of (S1996,
Chapter 2). We consider appropriate variations of u and explore its minimality.
First, let φ ∈ C∞

0 (Ω); hence, ut := (1 + tφ)u maps Ω into Ck, for |t| ≪ 1. The
minimality of u yields

∫
Ω
xa

d+1

[
φ|Du|2 + u ⟨Du,Dφ⟩

]
dx = 0,

which is tantamount to (3-1).
To verify (3-2), we start with a vector field ξ ∈ C∞

0 (Ω,Rd+1) satisfying
ξ(x′, 0) ⊂ Rd × {0}. For 0 < |t| ≪ 1, and x ∈ Ω, we define

Ψt(x) := x+ tξ(x).

Denote with Φt the inverse of Ψt and consider the variation

ut := u ◦ Φt.

Once again, the minimality of u gives

0 = d

dt

∣∣∣∣∣
t=0

∫
Ω
(xd+1 + tξd+1)a|Dut|2dx

= a
∫

Ω
xa−1

d+1ξd+1|Du|2dx+
∫

Ω
xa

d+1

(
|Du|2divξ − 2DuDξ ·Du

)
dx
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and concludes the proof. ■

Remark 1 In (3-2), the notation DuDξ ·Du stands for the inner product of
DuDξ and Du as vectors in Rd+m. That is,

DuDξ ·Du =
m∑

i=1

d+1∑
j,k=1

∂ui

∂xk

∂ui

∂xj

∂ξj

∂xk

.

3.2
Monotonicity Formulas

Remark 2 In order to extend the case Rd+1
+ to a general case in Rd+1 we can

argue through an extended function ũ : Rd+1 → Ck from u : Rd+1
+ → Ck, for

example taking his even reflection with respect to ∂Rd+1
+

ũ(x′, xd+1) :=

u(x′, xd+1), if xd+1 ≥ 0

u(x′,−xd+1), if xd+1 < 0
(3-3)

In this case ũ still being s-harmonic and minimizes

Es

(
u, Ω̃

)
= 1

2

∫
Ω̃

|xd+1|a|∇u(x)|2 dx = 2 Es

(
u,Ω

)

where Ω̃ = Ω ∪ ∂0Ω ∪
{
(x′,−xd+1)/x ∈ Ω

}
.

Lemma 3.2 Let Ω ⊆ Rd+1 be a bounded open set and suppose u ∈ H1
s (Ω;Ck)

is a minimiser of Es(u,Ω). If x0 ∈ Ω and r ∈ (0, dist(x0, ∂Ω)), the following
identity holds:

d

dr

Es

(
u,Br(x0)

)
rd+a−1

 = 1
rd+a−1

∫
∂Br(x0)

|xd+1|a
∣∣∣∣∣ ∂u

∂|x− x0|

∣∣∣∣∣
2

dSx

− a|x(d+1)
0 |

2rd+a

∫
Br(x0)

|xd+1|a−1|∇u|2 dx.

(3-4)

Proof. From (3-2) we have∫
Br(x0)

d+1∑
i,j=0

|xd+1|a
(

|∇u|2δi,j−2(∂iu•∂ju)
)
∂jXi+a

∫
Br(x0)

|xd+1|a−1|∇u|2xd+1 = 0.

(3-5)
Like in Simon (S1996), if ζ ∈ C∞

c (Br(x0)) and a⃗ = (a(1), . . . , a(d))∫
Br(x0)

d∑
j=1

a(j)∂jζ + Ψ = 0 =⇒
∫

Br(x0)

d∑
j=1

a(j)∂jζ = −Ψ =
∫

∂Br(x0)
η • a⃗ζ − Ψ.

(3-6)
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Set x̃0 =
(
x′

0, |x(d+1)
0 |

)
, then

∫
Br(x0)

d+1∑
i,j=0

|xd+1|a
(

|∇u|2δi,j − 2(∂iu • ∂ju)
)
∂jXi

=
∫

∂Br(x0)

d+1∑
i,j=1

xj − x̃
(j)
0

r

[
|xd+1|a

(
|∇u|2δi,j − 2(∂iu • ∂ju)

)]
Xi

− a
∫

Br(x0)
|xd+1|a−1|∇u|2xd+1.

If X = x− x̃0

(d− 1)
∫

Br(x0)
|xd+1|a|∇u|2 dx

=
∫

Br(x0)

d+1∑
i,j=1

|xd+1|a
(

|∇u|2δi,j − 2(∂iu • ∂ju)
)
δi,j dx

=
∫

∂Br(x0)

d+1∑
i,j=0

xj − x̃
(j)
0

r

[
|xd+1|a

(
|∇u|2δi,j − 2(∂iu • ∂ju)

) ]
(xi − x̃

(i)
0 ) dSx

− a
∫

Br(x0)
|xd+1|a−1

(
xd+1 − x̃

(d+1)
0

)
|∇u|2 dx

=
∫

∂Br(x0)

 d+1∑
i=1

∣∣∣xi − x̃
(i)
0

∣∣∣2
r

|xd+1|a|∇u|2 − 2r
d+1∑

i,j=0

(
xj − x̃

(j)
0

r
∂iu

)
•

(
xj − x̃

(j)
0

r
∂ju

)  dSx

− a
∫

Br(x0)
|xd+1|a|∇u|2 dx+ ax̃

(d+1)
0

∫
Br(x0)

|xd+1|a−1|∇u|2 dx

=
∫

∂Br(x0)
|xd+1|a

[
|x− x0|2

r
|∇u|2 − 2r

∣∣∣∣ x− x0

r
• ∇u

∣∣∣∣2
]
dSx

− a
∫

Br(x0)
|xd+1|a|∇u|2 dx+ ax̃

(d+1)
0

∫
Br(x0)

|xd+1|a−1|∇u|2 dx

= r
∫

∂Br(x0)
|xd+1|a

 |∇u|2 − 2
∣∣∣∣∣ ∂u

∂|x− x0|

∣∣∣∣∣
2
 dSx

− a
∫

Br(x0)
|xd+1|a|∇u|2 + ax̃

(d+1)
0

∫
Br(x0)

|xd+1|a−1|∇u|2 dx

Then, we have that

(d+ a− 1)
∫

Br(x0)
|xd+1|a|∇u|2 = r

∫
∂Br(x0)

|xd+1|a
 |∇u|2 − 2

∣∣∣∣∣ ∂u

∂|x− x0|

∣∣∣∣∣
2


+ ax̃
(d+1)
0

∫
Br(x0)

|xd+1|a−1|∇u|2

(3-7)
and, since

d

dr
Es

(
u,Br(x0)

)
= 1

2

∫
∂Br(x0)

|xd+1|a|∇u|2 dSx
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We get

d

dr

Es

(
u,Br(x0)

)
rd+a−1

 = −(d+ a− 1)
2rd+a

∫
Br(x0)

|xd+1|a|∇u|2 dx

+ 1
2rd+a−1

∫
∂Br(x0)

|xd+1|a|∇u|2 dSx

= −r
2rd+a

∫
∂Br(x0)

|xd+1|a
 |∇u|2 − 2

∣∣∣∣∣ ∂u

∂|x− x0|

∣∣∣∣∣
2


− ax̃
(d+1)
0

2rd+a

∫
Br(x0)

|xd+1|a−1|∇u|2 dx

+ 1
2rd+a−1

∫
∂Br(x0)

|xd+1|a|∇u|2 dSx

Then we get the equation (3-4). ■

Remark 3 By integrating the formula (3-4), and assuming x0 ∈ ∂Rd+1
+ we

get

Es

(
u,Bρ(x0)

)
ρd+a−1 −

Es

(
u,Bσ(x0)

)
σd+a−1 =

∫
Bρ(x0)\Bσ(x0)

xa
d+1

∣∣∣∇u • η
∣∣∣2

|x− x0|d+a−1 dx. (3-8)

Now we have the following proposition, that corresponds with (R2018,
Lemma 4.5) and (MPS2021, Proposition 2.17):

Proposition 3.3 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈

H1
s (Ω;Ck) is a minimizer of Es(u,Ω). For every x0 ∈ ∂0Ω we have

Θs(u, x0, ρ) − Θs(u, x0, σ) =
∫

B+
ρ (x0)\B+

σ (x0)

xa
d+1

∣∣∣∇u • η
∣∣∣2

|x− x0|d+a−1 dx (3-9)

for every 0 < σ < ρ < dist(x0,Ωc), the limit

Θs(u, x0) := lim
r↓0

Θs(u, x0, r) (3-10)

exists, and the function Θv : ∂0Ω → [0,∞) is upper semicontinuous. In
addition, for every x0 ∈ ∂0Ω,

Θs(u, x0, ρ) − Θs(u, x0) =
∫

B+
ρ (x0)

xa
d+1

∣∣∣∇u • η
∣∣∣2

|x− x0|d+a−1 dx (3-11)

for every 0 < ρ < dist(x0,Ωc).

Proof. It follows directly from Lemma 3.2, Remark 3 and using a reflection
argument like in Remark 2. ■

Another monotonicity result is corresponding to (R2018, Lemma 4.7):
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Lemma 3.4 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimiser of Es(u,Ω). Fixing a ball BR0(y) with BR0(y) ⊂ Ω, we have

eaρξρ1−d Es

(
u,Bρ(y)

)
−eaσξσ1−d Es

(
u,Bσ(y)

)
≥
∫

Bρ(y)\Bσ(y)

ea|x−y|ξ xa
d+1

∣∣∣∇u • η
∣∣∣2

|x− x0|d−1 dx
(3-12)

for every 0 < σ < ρ < R0, where ξ =
(
yd+1 −R0

)−1
.

Proof. We have that ( the equation (3-4) )

d

dr

Es

(
u,Br(y)

)
rd+a−1

 =
∫

∂Br(y)

xa
d+1 |∇u • η|
rd+a+1 dx− ayd+1

2rd+a

∫
Br(y)

xa−1
d+1 |∇u|2 dx

(3-13)

d

dr

[
earξ

rd−1 Es

(
u,Br(y)

) ]
= d

dr

 earξra
Es

(
u,Br(y)

)
rd+a−1


=
(
aearξra−1 + aξ earξra

) Es

(
u,Br(y)

)
rd+a−1

+ earξra

(∫
∂Br(y)

xa
d+1 |∇u • η|
rd+a+1 dx− ayd+1

2rd+a

∫
Br(y)

xa−1
d+1 |∇u|2 dx

)

=
∫

∂Br(y)

earξ xa
d+1 |∇u • η|
rd+1 dx

+ aearξ

rd

[
(1 + rξ) Es

(
u,Br(y)) − yd+1

2

∫
Br(y)

xa−1
d+1 |∇u|2 dx

]

So,

d

dr

[
earξ

rd−1 Es

(
u,Br(y)

) ]
=
∫

∂Br(y)

earξ xa
d+1 |∇u • η|
rd+1 dx+ aearξ

rd
Ψ(y, r) (3-14)

where

Ψ(y, r) = (1 + rξ) Es

(
u,Br(y)) − yd+1

2

∫
Br(y)

xa−1
d+1 |∇u|2 dx

We have that

yd+1

2

∫
Br(y)

xa−1
d+1|∇u|2 dx ≤ 1

2

∫
Br(y)

(
xa

d+1 + rxa−1
d+1

)
|∇u|2 dx

= Es

(
u,Br(y)) + r

2

∫
Br(y)

xa−1
d+1|∇u|2 dx

< Es

(
u,Br(y)) + rξEs

(
u,Br(y))

− rξ(R0 − r)
2

∫
Br(y)

xa−1
d+1|∇u|2 dx
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because ξ−1 = yd+1 − R0 < xd+1 + r − R0, then Ψ(y, y) > 0. So, in the case
a > 0 we obtain from (3-14) that

d

dr

[
earξ

rd−1 Es

(
u,Br(y)

) ]
>
∫

∂Br(y)

earξ xa
d+1 |∇u • η|
rd+1 dx (3-15)

Similarly,

yd+1

2

∫
Br(y)

xa−1
d+1|∇u|2 dx ≥ 1

2

∫
Br(y)

(
xa

d+1 − rxa−1
d+1

)
|∇u|2 dx

= Es

(
u,Br(y)) − r

2

∫
Br(y)

xa−1
d+1|∇u|2 dx

> Es

(
u,Br(y)) − rξEs

(
u,Br(y))

+ rξ(R0 − r)
2

∫
Br(y)

xa−1
d+1|∇u|2 dx

what implies

Ψ(y, r) < 2rξEs

(
u,Br(y)) − rξ(R0 − r)

2

∫
Br(y)

xa−1
d+1|∇u|2 dx

<

[
rξ (yd+1 + r) − rξ (R0 − r)

2

] ∫
Br(y)

xa−1
d+1|∇u|2 dx

= rξ
(
yd+1 + 3r

2 − R0

2

)
< 0

because ξ < 0 and yd+1 + 3r
2 − R0

2 > 0. Then, in the case a < 0 we also have
from (3-14) the inequality (3-15). At the end we conclude (3-12) by integration
from σ to ρ the inequality (3-15).

■

Lemma 3.5 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω). For every x0 ∈ ∂0Ω we have

d

dr

[
1

rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

]
= 4
rd+a

Es

(
u,B+

r (x0)
)
. (3-16)

Proof. Let ũ : Ω ∪ ∂0Ω ∪ {(x′,−xd+1)/x ∈ Ω} → Ck the odd reflection of u
respect to ∂Rd+1

+ , then

d

dr

[∫
∂B+

r (x0)
xa

d+1|u|2 dSx

]
= d

dr

[
rd

2

∫
∂B1

(
xa

d+1|ũ|2
)∣∣∣∣

x0+rx
dSx

]
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= n

r

∫
∂B+

r (x0)
xa

d+1|u|2 dSx + 1
2

∫
∂Br(x0)

∇
(
xa

d+1|ũ|2
)

• η dSx

= n

r

∫
∂Br(x0)

xa
d+1|u|2 dSx + 1

2

∫
∂Br(x0)




0
...
0

axa−1
d+1

 |u|2 + xa
d+1∇|u|2

 • η dSx

= n

r

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

+ 1
2

∫
∂Br(x0)

[
axa−1

d+1

(
xd+1 − x

(d+1)
0

) |ũ|2

r
+ xa

d+1∇|ũ|2 • η

]
dSx

= n

r

∫
∂B+

r (x0)
xa

d+1|u|2 dSx + a

2r

∫
∂Br(x0)

xa
d+1|ũ|2 dSx + 1

2

∫
∂Br(x0)

xa
d+1∇|ũ|2 • η dSx

By taking ϕk ∈ C∞
0 (Br(x0)) the approximation of the characteristic

function in Br(x0) and using (3-1), we have∫
B+

r (x0)
xa

d+1|∇u|2 dx = lim
k→∞

∫
B+

r (x0)
xa

d+1|∇u|2ϕk dx

= lim
k→∞

1
2

∫
B+

r (x0)
div

(
xa

d+1∇|u|2
)
ϕk dx

= lim
k→∞

[
−1

2

∫
B+

r (x0)

〈
xa

d+1∇|u|2,∇ϕk

〉
dx+ 1

2

∫
∂B+

r (x0)
xa

d+1ϕk∇|u|2 • η dSx

]

= lim
k→∞

[
1
2

∫
∂B+

r (x0)
xa

d+1ϕk ∇|u|2 • η dSx

]

= 1
2

∫
∂B+

r (x0)
xa

d+1 ∇|u|2 • η dSx

= 1
4

∫
∂Br(x0)

xa
d+1 ∇|ũ|2 • η dSx

(3-17)
Then

d

dr

[∫
∂B+

r (x0)
xa

d+1|u|2 dSx

]
= d+ a

r

∫
∂B+

r (x0)
xa

d+1|u|2 dSx + 2
∫

B+
r (x0)

xa
d+1|∇u|2 dx

and next, we get (3-16) by

d

dr

[
1

rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

]

= − d+ a

rd+a+1

∫
∂B+

r (x0)
xa

d+1|u|2 dSx + 1
rd+a

d

dr

[∫
∂B+

r (x0)
xa

d+1|u|2 dSx

]

= 2
rd+a

∫
B+

r (x0)
xa

d+1|∇u|2 dx.

■
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Lemma 3.6 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω). For every x0 ∈ ∂0Ω we have

d

dr
Ns(u, x0, r) ≥ 0, (3-18)

where
Ns(u, x0, r)

∫
∂B+

r (x0)
xa

d+1|u|2 dSx = 2rEs

(
u,B+

r (x0)
)
. (3-19)

Proof. From (3-19) we have

log Ns(u, x0, r) = log
2Es

(
u,B+

r (x0)
)

rd+a−1

− log
(

1
rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)

Using Lemmas 3.2 and 3.5 we obtain the identities

d

dr
log

2Es

(
u,B+

r (x0)
)

rd+a−1

 = 1
rd+a−1

∫
∂B+

r (x0)
xa

d+1 | ∇u • η|2 dSx

Es

(
u,B+

r (x0)
)

rd+a−1

−1

= 2r
Ns(u, x0, r)

∫
∂B+

r (x0)
xa

d+1 | ∇u • η|2 dSx

(∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)−1

and

d

dr
log

(
1

rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)
=

4Es

(
u,B+

r (x0)
)

rd+a

(
1

rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)−1

= 2Ns(u, x0, r)
r

,

so, we get

d

dr
Ns(u, x0, r) = 2r

∫
∂B+

r (x0)
xa

d+1 | ∇u • η|2 dSx

(∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)−1

−2N2
s(u, x0, r)
r

(3-20)
Because (3-17) from Lemma 3.5’s proof
∫

B+
r (x0)

xa
d+1|∇u|2 dx = 1

2

∫
∂B+

r (x0)
xa

d+1 ∇|u|2 • η dSx =
∫

∂Br(x0)
xa

d+1 u∇u • η dSx

By Cauchy-Schwarz inequality

4E2
s

(
u,B+

r (x0)
)

=
(∫

∂B+
r (x0)

xa
d+1 u∇u • η dSx

)2

≤
(∫

∂B+
r (x0)

xa
d+1 |∇u • η|2dSx

)(∫
∂B+

r (x0)
xa

d+1 |u|2dSx

)



Chapter 3. Intrinsic s-Harmonic maps with free boundary 40

then

2r
∫

∂B+
r (x0)

xa
d+1 | ∇u • η|2 dSx

(∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)−1

≥ 8rE2
s

(
u,B+

r (x0)
)(∫

∂B+
r (x0)

xa
d+1 |u|2dSx

)−2

= 2N2
s(u, x0, r)
r

So, we conclude

d

dr
Ns(u, x0, r) ≥ 2N2

s(u, x0, r)
r

− 2N2
s(u, x0, r)
r

= 0

■

3.3
Useful Estimates

Lemma 3.7 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω). For every x0 ∈ ∂0Ω we have(

r

R

)d+a+2Ns(u,x0,R)
≤
∫

∂B+
r (x0) x

a
d+1|u|2 dSx∫

∂B+
R(x0) x

a
d+1|u|2 dSx

≤
(
r

R

)d+a+2Ns(u,x0,r)
(3-21)

where 0 < r < R and BR(x0)+ ⊂ Ω.

Proof. Like we see in Lemma 3.6’s proof

d

dr
log

(
1

rd+a

∫
∂B+

r (x0)
xa

d+1|u|2 dSx

)
= 2Ns(u, x0, r)

r

then, by integration

Rd+a
∫

∂B+
r (x0) x

a
d+1|u|2 dSx

rd+a
∫

∂B+
R(x0) x

a
d+1|u|2 dSx

= exp
∫ R

r

2Ns(u, x0, s)
s

ds

We have, because the monotonicity of Ns(u, x0, s) with respect to s (Lemma
3.6)

2Ns(u, x0, r) log
(
R

r

)
≤
∫ R

r

2Ns(u, x0, s)
s

ds ≤ 2Ns(u, x0, R) log
(
R

r

)
,

which implies the inequality (3-21).
■
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Lemma 3.8 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω) with respect to the boundary data u0 ∈ Hs(∂Ω;Ck).
If there is M ≥ 1 such that |u0| ≤ M , then |u| ≤ M .

Proof. Set ΠM : Ck → Ck,M the Lipchitz retraction of Ck to the set
Ck,M := {y ∈ Ck : |y| ≤ M}, defined as identity on Ck,M and sending each
point y ∈ Ck \Ck,M to the point of intersection between ∂Ck and the geodesic
line that connect y to the vertex 0.

Note that, for each ξ ∈ TxCk with x ∈ Ck \ Ck,M , |dΠM(ξ)| < |ξ|, then

Es(ΠMu,Ω) = 1
2

∫
Ω∩{|u|>M}

xa
d+1|∇(ΠMu)| dx+ 1

2

∫
Ω∩{|u|≤M}

xa
d+1|∇(ΠMu)| dx

= 1
2

∫
Ω∩{|u|>M}

xa
d+1|dΠM(∇u))| dx+ 1

2

∫
Ω∩{|u|≤M}

xa
d+1|∇u| dx

<
1
2

∫
Ω∩{|u|>M}

xa
d+1|∇u| dx+ 1

2

∫
Ω∩{|u|≤M}

xa
d+1|∇u| dx

= Es(u,Ω)

but (ΠMu)
∣∣∣
∂Ω

= ΠM(u0) = u0, so we are contradicting the minimality of u,
unless u ≤ M . ■

Lemma 3.9 Let n ≥ 2 and h ∈ H1
s (B+

r (x0);Ck) a s-harmonic function. It
holds that∫

B+
r (x0)

xa
d+1|∇h|2dx ≤ C

(∫
∂B+

r (x0)
xa

d+1|∇tanh|2dSx

)1/2 (∫
∂B+

r (x0)
xa

d+1|h− ξ|2 dSx

)1/2

(3-22)
for some C = C(d, a) and any constant ξ ∈ Rd.

Proof. Because integration by parts and the s-harmonicity of h, we have that∫
B+

r (x0)
xa

d+1|∇h|2dSx =
∫

B+
r (x0)

∇(h− ξ) •
(
xa

d+1∇h
)
dSx

=
∫

∂B+
r (x0)

(h− ξ) •
(
xa

d+1∇h • ν
)
dSx

−
∫

B+
r (x0)

(h− ξ) • div
(
xa

d+1∇h
)
dSx

=
∫

∂B+
r (x0)

xa
d+1(h− ξ) • (∇h • ν) dSx,

and then, by Cauchy-Schwartz and Hölder inequalities∫
B+

r (x0)
xa

d+1|∇h|2dSx =
∫

∂B+
r (x0)

xa
d+1(h− ξ) • (∇h • ν) dSx

≤
∫

∂B+
r (x0)

xa
d+1|h− ξ| |∇h • ν|dSx

≤
(∫

∂B+
r (x0)

xa
d+1|∇h • ν|2dSx

)1/2 (∫
∂B+

r (x0)
xa

d+1|h− ξ|2dSx

)1/2
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Since there is C such that
∫

∂B+
r (x0)

xa
d+1|∇h • ν|2dSx ≤ C

∫
∂B+

r (x0)
xa

d+1|∇tanh|2dSx,

we get (3-22).
■

Lemma 3.10 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω) with ∥u∥L∞(∂Ω) < ∞. There is a constant C

depending on d, k and ∥u∥L∞(∂Ω) and there exists w ∈ H1
s (Br(x0);Ck), an

extension of u
∣∣∣
∂B+

r (x0)
to B+

r (x0) satisfying:

∫
B+

r (x0)
xa

d+1|∇w|2 dx ≤ C

(∫
∂B+

r (x0)
xa

d+1|∇tanu|2dSx

)1/2 (∫
∂B+

r (x0)
xa

d+1|u− ξ|2dSx

)1/2

,

for any ξ ∈ Rm and B+
r (x0) ⊂ Ω with x0 ∈ ∂Rd+1

+ .

Proof.
Since x 7→ xa

d+1 is an A2-weight, (HKM2006, Theorem 3.17) allow us to
choose h ∈ H1

s (B+
r (x0);Ck) a s-harmonic function with h

∣∣∣
∂B+

r (x0)
= u.

Now we claim that there exists w ∈ H1
s (B;Ck) such that w = h on

∂B+
r (x0) and C = C(d, |u|L∞(∂Ω)) such that∫

B+
r (x0)

xa
d+1|∇w|2 dx ≤ C

∫
B+

r (x0)
xa

d+1|∇h|2 dx (3-23)

Set Ck,M = {y ∈ Ck s.t |y| ≤ M}, for some M ≥ 1 such that
∥u∥L∞(∂Ω) ≤ M . Because of (H1987, Lemma 6.1), there exists a compact
0-dimensional Lipschitz set X ⊂ Rd+1 and a locally Lipschitz retraction
P : Rd+1 \X → Ck,M such that

∫
B

|∇P (x)|2 dx < ∞ for any ball B ⊂ Rd+1.

Note that there is τ > 0 depending on k such that the projection Π(y) is unique
under the condition dist(y,Ck,M) < τ . Let B an open ball containing Ck,M ∪X
and defines Pz(x) := P (x− z) for z ∈ Bσ when σ < inf{τ, dist(Ck,M , ∂B)}. We
also need to assume that Bσ(h(x)) ⊂ B for almost every x ∈ B+

r (x0) by taking
σ small enough or increasing B.

Since h is smooth on Ω, we may apply Sard’s theorem to see that the
compositions Pz ◦ h ∈ H1

s (B+
r (x0);Ck,M) for almost all z. Using Fubini’s
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theorem, the chain rule and matrix sub-multiplicativity, we can get∫
Bσ

∫
B+

r (x0)
xa

d+1 |∇(Pz ◦ h)(x)|2 dxdz

≤
∫

B+
r (x0)

xa
d+1 |∇h(x)|2

∫
Bσ

∣∣∣∇Pz

(
h(x)

)∣∣∣2 dzdx
=
∫

B+
r (x0)

xa
d+1 |∇h(x)|2

∫
Bσ

(
h(x)

) |∇P (y)|2 dydx

≤
∫
B

|∇P (y)|2 dy
∫

B+
r (x0)

xa
d+1 |∇h(x)|2 dx.

We can choose a z0 ∈ Bσ such that

|Bσ|
∫

B+
r (x0)

xa
d+1 |∇(Pz0 ◦ h)(x)|2 dx ≤ 2

∫
Bσ

∫
B+

r (x0)
xa

d+1 |∇(Pz ◦ h)(x)|2 dxdz.

Then, taking a constant C̃ ≥ 2|Bσ|−1 ∫
B |∇P (y)|2 dy,

∫
B+

r (x0)
xa

d+1 |∇(Pz0 ◦ h)(x)|2 dx ≤ C̃
∫

B+
r (x0)

xa
d+1 |∇h(x)|2 dx.

So, lets take

w =
(
Pz0

∣∣∣
Ck,M

)−1
◦ Pz0 ◦ h ∈ H1

s (B+
r (x0);Ck,M),

clearly w
∣∣∣
∂B+

r (x0)
= h

∣∣∣
∂B+

r (x0)
= u

∣∣∣
∂B+

r (x0)
, thus, using inverse function theorem,

(3-23) follows by taking

C = C̃ · sup
z∈Bσ

Lip
(
Pz

∣∣∣
Ck,M

)−1

At the end, the result follows by combining the estimation (3-23) and
Lemma 3.9.

■

Lemma 3.11 Let Ω ⊆ Rd+1
+ be a bounded open set and suppose u ∈ H1

s (Ω;Ck)
is a minimizer of Es(u,Ω).For any compact K ⊂ Ω, there exists a constant D0

depending on ∥u∥L∞(∂Ω), K and Ω such that
∫

K
xa

d+1|∇u|2 ≤ D0.

Proof. By the compactness of K, scaling and translation, it suffices to prove
the estimate for Ω = B1 and K = B1−δ for a fixed δ ∈ (0, 1).

By Lemma 3.8, there is R > 0 such that u(B1) ⊆ BR ∩ Ck.
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Since, for almost every r ∈ (0, 1), holds that

d

dr

∫
B+

r

xa
d+1|∇u|2 dx =

∫
∂B+

r

xa
d+1|∇u|2 dx

so, because the minimality of u and taken ξ = 0 from Lemma 3.10, and taking
M = M(∥u∥L∞(∂Ω)) from Lemma 3.8 we have

D(r) :=
∫

B+
r

xa
d+1|∇u|2 dx ≤ C

(
d

dr

∫
B+

r

xa
d+1|∇u|2 dx ·

∫
∂B+

r

xa
d+1|u|2dSx

)1/2

≤ CMψ(d, a)
√
rd+a

(
d

dr

∫
B+

r

xa
d+1|∇u|2 dx

)1/2

= CMψ(d, a)
√
rd+a D′(r)1/2

then
(CMψ(d, a))−2

rd+a
≤ D′(r)
D(r)2

so, by integrating from (1 − δ) to 1, we get

− (CMψ(d, a))−2

d+ a− 1

(
1 − 1

(1 − δ)d+a−1

)
≤ −1
D(1) + 1

D(1 − δ) ≤ 1
D(1 − δ)

then
∫

K
xa

d+1|∇u|2 = D(1 − δ) ≤ (d+ a− 1) (CMψ(d, a))2 (1 − δ)d+a−1

1 − (1 − δ)d+a−1 = D0

So the result has been prove. ■

Lets denote

uB+
r (y),s =

(∫
B+

r (y)
xa

d+1 dx

)−1 ∫
B+

r (y)
xa

d+1u(x) dx (3-24)

Lemma 3.12 (Caccioppoli-type inequality) Let u ∈ H1
s (B+

R ;Ck) is a
minimizer of Es(u,B+

R). Then, for every λ ∈ (0, 1), there exists a constant
C depending on k such that

Θs (u, x0, r) ≤ λΘs (u, x0, 2r) + C

λ2 Ws(u, x0, 2r), (3-25)

where x0 ∈ ∂Rd+1
+ , B2r(x0) ⊂ B+

R and

Ws(u, x0, ρ) :=
(∫

B+
ρ (x0)

xa
d+1 dx

)−1 ∫
B+

ρ (x0)
xa

d+1

∣∣∣u(x) − uB+
ρ (x0),s

∣∣∣2 dx.
Proof.
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From Lemma 3.10, and using the Cauchy’s inequality

AB ≤ 1
2

(
δA2 + 1

δ
B2
)

with δ = λρ with µ ∈ (0, 1), we have that there is a constant C depending on k
and ∥u∥L∞

s (∂Ω) and there exists w ∈ H1
s (B+

ρ (x0);Ck), an extension of u
∣∣∣
∂B+

r (x0)
to B+

r (x0) satisfying:

1
ρd+a−1

∫
B+

ρ (x0)
xa

d+1|∇w|2 dSx ≤ λ

2ρd+a−2

∫
∂B+

ρ (x0)
xa

d+1|∇tanu|2dSx

+ C

2λ2ρd+a

∫
∂B+

ρ (x0)
xa

d+1|u− ξ|2dSx,

Note that
∫ 2r

r

∫
∂B+

ρ (x0)
xa

d+1|∇u|2 dSx dρ =
∫

B+
2r(x0)\B+

r (x0)
xa

d+1|∇u|2 dx

so, there is ρ1 ∈ (r, 2r) such that
∫

∂B+
ρ1 (x0)

xa
d+1|∇u|2 dSx = 1

r

∫
B+

2r(x0)\B+
r (x0)

xa
d+1|∇u|2 dx ≤ 1

r

∫
B+

2r(x0)
xa

d+1|∇u|2 dx,

in a similar way, we have that exists ρ2 ∈ (r, 2r) such that
∫

∂B+
ρ2 (x0)

xa
d+1|u− ξ|2 dSx ≤ 1

r

∫
B+

2r(x0)
xa

d+1|u− ξ|2 dx,

Taking in account that ∇tanu = ∇u− (∇u)(ν ⊗ ν), we have that
∫

∂B+
ρ1 (x0)

xa
d+1|∇tanu|2 dSx ≤ 2

∫
∂B+

ρ1 (x0)
xa

d+1|∇u|2 dSx,

now, setting ρ = min(ρ1, ρ2), and using the monotonicity of Θ and the
minimality of u, we get

Θs (u, x0, r) ≤ 1
ρd+a−1

∫
∂B+

ρ (x0)
xa

d+1|∇w|2 dSx

≤ λ

rd+a−1

∫
B+

2r(x0)
xa

d+1|∇u|2dSx + C

2λ2rd+a+1

∫
B+

2r(x0)
xa

d+1|u− ξ|2dSx

≤ λΘs (u, x0, 2r) + C

λ2 Ws(u, x0, 2r)

by taken ξ = uB+
2r(x0),s and the fact that

∫
B+

2r(x0)
xa

d+1 dx = (2r)d+a+1ψ(d, a)
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so we also replace C by C · ψ(d, a)
2d+a

.
■

Lemma 3.13 Let ui ∈ H1
s (B1;Ck) be a sequence of minimizing maps of

Es(u,B1), such that ui ∈ L∞
s (∂B1) and ui converges to u∞ weakly in

H1
s (B1;Ck). Then u∞ is a minimizing map of Es(u,B1), and ui converge to

u∞ strongly in H1
s (B1;Ck).

Proof. Set Ws like in Lemma 3.12, using the weighted Sobolev-Poincaré
Inequality (See (HKM2006), it is easy to verify that xa

d+1 is an A2-weight).

Ws(ui, x0, 2r)1/2 ≤ C(d) · rWs

(
|∇ui|p, x0, 2r

)1/p

where p = 2n
2 + d

∈ [1, 2], then from the Caccioppoli-type inequality (3-25), for
any λ ∈ (0, 1) we have

Θs (ui, x0, r) ≤ λΘs (ui, x0, 2r) + C(d, a)r2

λ2 Ws

(
|∇ui|p, x0, 2r

)2/p
,

Take into account that, since x0 ∈ ∂Rd+1,
∫

B+
ρ (x0)

xa
d+1 dx = ρd+a+1ψ(d, a),

where

ψ(d, a) =
∫

[0,π]d

sind−1(φ1) sind−2(φ2) . . . sin(φd−1)
d+ a+ 1 cosa(φ1) dφ1 dφ2 . . . dφn

so, dividing by r2ψ(d, a) we have

Ws

(
|∇ui|2, x0, r

)
≤ 2d+a+1λWs

(
|∇ui|2, x0, 2r

)
+ C(d, a)
λ2ψ(d, a) Ws

(
|∇ui|p, x0, 2r

)2/p

= θWs

(
|∇ui|2, x0, 2r

)
+ C̃

θ2 Ws

(
|∇ui|p, x0, 2r

)2/p
,

where θ = λ/2d+a+1 ∈ (0, 1).
From (G1983, Chapter V, Proposition 1.1), that inequality allows us to

conclude that |∇ui| are equibounded in Lq
loc for some q > 2.

Let w ∈ H1
s (B+

1 ,Ck) be an arbitrary map with boundary value w = u on
∂B+

1 and choose η a smooth cut-off function such that, given δ > 0 η ≡ 1 on
B1−δ, η = 0 on ∂B+

1 and |∇η| ≤ δ−1 on the set Aδ = B+
1 \ B+

1−δ. Now set in
B1 the map

vj = (1 − η)uj + ηw
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Arguing like in Lemma 3.10’s proof, we can obtain a map wj ∈ H1
s (B1,Ck)

such that ∫
Aδ

xa
d+1|∇wj|2 dx ≤ C

∫
Aδ

xa
d+1|∇vj|2 dx,

wj = vj = w on ∂B+
1−δ,

wj = vj = uj on ∂B+
1 ,

wj = w on B+
1−δ,

(3-26)

where C depends on k uniform in j.
Because semicontinuity of the energy and the minimality of uj, for j large

enough, we have that∫
B+

1

xa
d+1|∇u|2 dx− ϵ

2 ≤
∫

B+
1

xa
d+1|∇uj|2 dx ≤

∫
B+

1

xa
d+1|∇wj|2 dx, (3-27)

for a given ϵ > 0. Then, using (3-26)∫
B+

1

xa
d+1|∇u|2 dx− ϵ

2 ≤
∫

B1−δ

xa
d+1|∇wj|2 dx+ C

∫
Aδ

xa
d+1|∇wj|2 dx. (3-28)

We also have∫
Aδ

xa
d+1|∇vj|2 dx =

∫
Aδ

xa
d+1

∣∣∣∇(uj − η(uj − w))
∣∣∣2 dx

=
∫

Aδ

xa
d+1

∣∣∣∇uj − η∇(uj − w) − (uj − w)∇η
∣∣∣2 dx

≤ 2
∫

Aδ

xa
d+1

(
|1 − η|2|∇uj|2 + |η|2|∇w|2 + |uj − w|2|∇η

∣∣∣2) dx
= c1

∫
Aδ

xa
d+1|∇uj|2 + c2

∫
Aδ

xa
d+1|∇w|2 + c3δ

−2
∫

Aδ

xa
d+1|uj − w|2

Because the Hölder inequality and the equiboundness of ∇uj, we have

∫
Aδ

|∇uj|2 dx ≤
(∫

Aδ

|∇uj|q dx
)2/q

|Aδ|1−2/q ≤ b1|Aδ|1−2/q

using Young inequality and a varient of Poincaré inequality∫
Aδ

xa
d+1|uj − w|2 dx ≤ 2

∫
Aδ

xa
d+1|uj − u|2 + 2

∫
Aδ

xa
d+1|u− w|2 dx

≤ 2
∫

Aδ

xa
d+1|uj − u|2 + 2b2δ

2
∫

Aδ

xa
d+1|∇(u− w)|2 dx

Thus, we obtain∫
Aδ

xa
d+1|∇vj|2 dx = C1|Aδ|1−2/q + C2δ

−2
∫

Aδ

xa
d+1|uj − u|2

+ C3δ
−2
∫

Aδ

xa
d+1|∇w|2 + C4δ

−2
∫

Aδ

xa
d+1|∇(u− w)|2

Since uj → u strongly in L2
s(B+

1 ), and choosing δ small enough such that
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lim sup
j→∞

∫
Aδ

x2
d+1|∇vj|2 dx ≤ ϵ

2C , (3-29)

thus we get from (3-28) that
∫

B+
1

x2
d+1|∇u|2 dx ≤

∫
B+

1

x2
d+1|∇w|2 + ϵ

Since w and ϵ are arbitrary, we conclude that u is minimizer.
Now, we can in order to prove the strong convergence, let w = u, thus∫

B+
1

x2
d+1|∇uj − ∇u|2 dx

=
∫

B+
1

x2
d+1|∇uj|2 dx+

∫
B+

1

x2
d+1|∇u|2 dx− 2

∫
B+

1

x2
d+1∇uj • ∇u dx

≤
∫

B+
1

x2
d+1|∇uj|2 dx+

∫
B+

1

x2
d+1|∇u|2 dx− 2

∫
B+

1

x2
d+1|∇u|2 dx+ ϵ

2

≤
∫

B+
1

x2
d+1|∇uj|2 dx−

∫
B+

1

x2
d+1|∇u|2 dx+ ϵ

2

By the minimimality of uj and taking w = u in (3-26) we get
∫

B+
1

x2
d+1|∇uj|2 dx ≤

∫
B+

1

x2
d+1|∇u|2 dx+ C

∫
Aδ

x2
d+1|∇vj|2 dx,

then, taking again a small enough δ such that (3-29) holds, we have
∫

B+
1

x2
d+1|∇uj − ∇u|2 dx ≤ C

∫
Aδ

x2
d+1|∇vj|2 dx+ ϵ

2 ≤ ϵ.

We conclude that the convergence is strong in H1
s (B+

1 )
■

3.4
Energy Decay Lemmas

Lemma 3.14 (Morrey’s Decay Lemma) Suppose u ∈ W 1,p (BR(x0)) , β >
0, γ ∈ (0, 1] are constants, and

ρ p−1−d
∫

Br(y)
|∇u|p ≤ βp

(
ρ

R

)pγ

, ∀y ∈ BR/2 (x0) , ρ ∈ (0, R/2].

Then u ∈ C0,γ
(
BR (x0)

)
and

|u(x1) − u(x2)| ≤ Cβ

(
|x1 − x2|

R

)γ

, ∀x1, x2 ∈ BR/2 (x0) ,

where C depends only on d.

Proof. (M2005, Lemma 2.1) ■
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Remark 4 In the Lemma 3.14 we can replace BR(x0) by B+
R(x0) through a

reflection argument; that is replacing u by his even reflection in ∂Rd+1
+ like in

Remark 2.

The next lemma is based on (GT2001, Lemma 8.23)

Lemma 3.15 Let ω be non-decreasing function on an interval (0, R] satisfy-
ing, for all r ≤ R, the inequality

ω(θr) ≤ κω(r)

where γ > 0 and 0 < θ < 1. Then , there exists γ ∈ (0, 1) depending on (θ, κ)
such that

ω(r) ≤ 1
κ

(
r

R

)γ

ω(R).

Proof. Fix any r1 ∈ [r, R] and note that for every m ∈ N

ω(θmr1) ≤ κω(θm−1r1) ≤ · · · ≤ κmω(r1) ≤ κmω(R)

There is m such that
θmr1 ≤ r ≤ θm−1r1

Hence, taking γ1 = log(κ)/ log(θ)

ω(r) ≤ ω(θm−1r1) ≤ κm−1ω(R) ≤ 1
κ
θmγ1ω(R) ≤ 1

κ

(
r

r1

)γ1

ω(R)

At the end we can choose µ > 0 and r1 = Rµ r1−µ ∈ (r, R) such that
γ = µ γ1 < 1, so

ω(r) ≤ 1
κ

(
r

r1

)γ1

ω(R) = 1
κ

(
r

R

)γ

ω(R)

■

Lemma 3.16 Let u ∈ H1
s (Rd+1

+ ;Ck) be a minimizing of Es(u,Ω). Suppose
B+

R (x0) is a half-ball with ∂0B+
R (x0) ⊂ Ω and suppose Bρ(y) ⊂ B+

R(x0) such
that y ∈ B+

R/3(x0) with yd+1 ≥ 2ρ, then there is a constant C = C(d) such that

ρ1−d
∫

Bρ(y)
|∇u|2 ≤ C Θs(u, x0, R).

Proof.
Noticing that for any x ∈ Bρ(y)

1
2 y

a
d+1 ≤ xa

d+1 ≤ 6 ya
d+1
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and using the monotonicity result from Lemma 3.4 we have that

ρ1−d
∫

Bρ(y)
|∇u(x)|2 dx ≤ 2

ya
d+1

ρ1−d
∫

Bρ(y)
xa

d+1|∇u(x)|2 dx

≤ 2
ya

d+1

eayd+1ξ/2

eaρξ

(
yd+1

2

)1−d ∫
B yd+1

2
(y)
xa

d+1|∇u(x)|2 dx

where ξ = (yd+1 − yd+1/2)−1 = 2/yd+1, then

ρ1−d
∫

Bρ(y)
|∇u(x)|2 dx ≤ 2a+1e2

(
yd+1

2

)1−d−a ∫
B yd+1

2
(y)
xa

d+1|∇u(x)|2 dx

(3-30)
Since B yd+1

2
(y) ⊂ B 3yd+1

2
(y′, 0) and yd+1 ≤ |y− x0| ≤ R

3 , we get, by using
the monotonicity result from Proposition 3.3, that

ρ1−d
∫

Bρ(y)
|∇u(x)|2 dx ≤ 2a+2e2

31−d−a
Θs

(
u, (y′, 0), 3yd+1

2

)

≤ 2a+2e2

31−d−a
Θs

(
u, (y′, 0), R2

)

we also have that BR/2(y′, 0) ⊆ BR(x0), so

ρ1−d
∫

Bρ(y)
|∇u(x)|2 dx ≤ 2a+2e2

61−d−a
Θs (u, x0, R)

Taking C(d) = 48e2

61−d
we get the result. ■

The following Energy Decay Result is based on (R2018, Lemma 4.20)
and (AHL2017, Claim of equation 2.27).

Lemma 3.17 Let u ∈ H1
s (Rd+1

+ ;Ck) be a minimizing of Es(u,Ω). Sup-
pose B+

R (x0) satisfies R ≤ 1 and ∂0B+
R (x0) ⊂ Ω. There exists an ε0 =

ε0
(
d, ∥u∥L2(Ω), a

)
> 0 and a θ0 = θ0

(
d, ∥u∥L2(Ω), a

)
∈ (0, 1/4) such that if

Θs (u, x0, R) ≤ ε0,

then
Θs (u, y, θ0ρ) ≤ 1

2 Θs (u, y, ρ) ,

for every B+
ρ (y) ⊂ B+

R(x0) with y ∈ BR/2(x0) ∩ ∂Rd+1
+ and ρ ≤ R/2.

Proof.
Lets prove by contradiction, considering a sequence of minimizers {ui}

such that
|ui| ≤ ∥u∥L∞(∂Bρ(x0)), (3-31)

Θs (ui, y, ρ) = εi → 0, as i → ∞ (3-32)
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but, for some θ̃
Θs

(
ui, y, θ̃ρ

)
>

1
2 Θs (ui, y, ρ) (3-33)

If there exists a C > 0 such that
∫

∂B+
ρ (y)

xa
d+1|ui|2 dSx ≤ C Θs (ui, y, ρ)

Because or Lemma 3.5, we have that

d

dr

[
1

rd+a

∫
∂B+

r (x0)
xa

d+1|ui|2 dSx

]
= 4
r

Θs

(
ui, B

+
r (x0)

)
. (3-34)

and also using monotonicity of Θs (ui, y, ρ), we get

4Θs

(
ui, B

+
θ̃ρ

(x0)
) ∫ ρ

θ̃ρ

dr

r
≤
∫ ρ

θ̃ρ

4
r

Θs

(
u,B+

r (x0)
)
dr

= 1
ρd+a

∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx − 1
(θ̃ρ)d+a

∫
∂B+

θ̃ρ
(x0)

xa
d+1|ui|2 dSx

≤ C Θs (ui, y, ρ)

then
Θs

(
ui, B

+
θ̃ρ

(x0)
)

≤ C

4 log(1/θ̃)
Θs

(
ui, B

+
θ̃

(x0)
)
,

but when 0 ≤ θ̃ ≤ e−C/2 we contradict (3-33), so
∫

∂B+
ρ (y) x

a
d+1|ui|2 dSx does not

decay as fast as Θs (ui, y, ρ).
Using the scaling invariance of the target Ck, we can replace ui by

(∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx

)−1/2

ui

to assume ∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx = 1,

in that case (3-32) and (3-33) still hold.
Let ui = uiB+

ρ (x0),s, then

0 ≤
∫

B+
ρ (x0)

xa
d+1

(
|ui(x)|2 − |ui|2

)
dx =

∫
B+

ρ (x0)
xa

d+1|ui(x) − ui|2 dx

≤ C(d)ρ2
∫

B+
ρ (x0)

xa
d+1|∇ui|2 dx

≤ C(d)ρd+a+1 Θs (ui, x0, ρ) ,

(3-35)

because the weighted Poincaré inequality (See (HKM2006, 1.4), it is easy
to verify that xa

d+1 is an A2-weight). Here we may work with an absolutely
continuous representative of ui, which we do not relabel. Then, using Lemma
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3.7

∫
B+

ρ (x0)
xa

d+1|ui|2dx ≥
∫ ρ

0

(
r

ρ

)d+a+2Ns(u,x0,ρ) ∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx dr

= ρ

1 + d+ a+ 2Ns(u, x0, ρ)

∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx,

where

Ns(u, x0, ρ) = 2ρEs

(
u,B+

ρ (x0)
)(∫

∂B+
ρ (x0)

xa
d+1|ui|2 dSx

)−1

,

and then ∫
B+

ρ (x0)
xa

d+1|ui|2dx ≥ ρ

1 + d+ a+ 2ρd+a Θs(ui, x0, ρ)

next, we get

|ui|2 =
(∫

B+
ρ (x0)

xa
d+1dx

)−1 (∫
B+

ρ (x0)
xa

d+1|ui|2dx−
∫

B+
ρ (x0)

xa
d+1

(
|ui|2 − |ui|2

)
dx

)

≥ ψ(d, a)
ρd+a+1

(
ρ

d+ a+ 2ρd+a Θs(ui, x0, ρ)
− C(d)ρd+a+1 Θs (ui, x0, ρ)

)

= ψ(d, a)
(d+ a)ρd+a + 2ρ2d+2a Θs(ui, x0, ρ)

− C(d)ψ(d, a) Θs (ui, x0, ρ) .

Since Θs (ui, x0, ρ) → 0, there is η > 0 such that, for i large enough, |ui| > η.
From the weighted Jensen‘s inequality and Lemma 3.7

|ui|2 ≤
(∫

B+
ρ (x0)

xa
d+1dx

)−1 ∫
B+

ρ (x0)
xa

d+1|ui|2dx

≤ ψ(d, a)
ρd+a+1

∫ ρ

0

(
r

ρ

)d+a+2Ns(u,x0,r) ∫
∂B+

ρ (x0)
xa

d+1|ui|2 dSx dr

≤ ψ(d, a)
ρd+a

Let ũi be the minimizer of dist(ui,Ck), since

dist2 (ui,Ck) ≤
(∫

B+
ρ (x0)

xa
d+1dx

)−1 ∫
B+

ρ (x0)
xa

d+1|ui(x) − ui|2dx

≤ C(d)ρ2
(∫

B+
ρ (x0)

xa
d+1dx

)−1 ∫
B+

ρ (x0)
xa

d+1|∇ui|2dx

≤ C(d, a) Θs (ui, x0, ρ) ,

we have that
|ui − ũi|2 ≤ C(d, a) Θs (ui, x0, ρ) (3-36)
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Passing to a subsequence if necessary, and because (3-32), there is a
constant u∗ such that ui and ũi, both converge to u∗ and |u∗| > η > 0. We also
may assume, by scaling and translations, that x0 = 0 and ρ = 1.

Now, let ri = |u∗ − ũi| and define

Ui :=

(ui − u∗) Θs (ui, 0, 1)−1/2 If limi→∞(ri/εi) < ∞.

(ui − ũi) Θs (ui, 0, 1)−1/2 If limi→∞(ri/εi) < ∞ is not true.

It is clear that ∥∇Ui∥L2
s(B+

1 ) =
√

2.
When limi→∞(ri/εi) < ∞, we follow from (3-35) and (3-36) that

∥Ui∥L2
s(B+

1 ) = Θs (ui, 0, 1)−1/2 ∥ui − u∗∥L2
s(B+

1 )

≤ Θs (ui, 0, 1)−1/2
(
∥ui − ui∥L2

s(B+
1 ) + ∥ui − ũi∥L2

s(B+
1 ) + ri |B+

1 |1/2
)

≤ C(d)1/2 + C(d, a)1/2 |B+
1 |1/2 + ri

εi

|B+
1 |1/2ε

1/2
i < ∞.

In the other case,

∥Ui∥L2
s(B+

1 ) = Θs (ui, 0, 1)−1/2 ∥ui − ũi∥L2
s(B+

1 )

≤ Θs (ui, 0, 1)−1/2
(
∥ui − ui∥L2

s(B+
1 ) + ∥ui − ũi∥L2

s(B+
1 )

)
≤ C(d)1/2 + C(d, a)1/2 |B+

1 |1/2 < ∞,

Hence in any case, by Rellich Compactness, Lemma (R2018, Lemma 2.5),
passing to a subsequence if necessary, that Ui ⇀ U∞ weakly in H1

s , converge
strongly in L2

s(B+
1 ) and satifies:

∥∇U∞∥L2
s(B+

1 ) ≤ lim inf
i→∞

∥∇Ui∥L2
s(B+

1 ) =
√

2

Besides, we claim that U∞ maps B1 to Tu∗Ck almost everywhere which
is in a hyperplane, as |u∗| > η > 0.

To prove this claim, first note by Egorov’s Theorem, since Ui and U∞ are
bounded a.e., that for every δ > 0, there exists Eδ ⊂ B+

1 witch |B+
1 \ Eδ| < δ

such that Ui convergence uniformly on Eδ.
We also have that, there is a sequence of maps Wi : B+

1 \ Eδ → Tũi
Ck

such that |Ui − Wi| = γi → 0. Since ũi and u∗ are bounded uniformly away
from 0, there exists a sequence map τi : Tũi

Ck → Tu∗Ck such that τi converge
to the identity, as i → ∞. Setting W̃i := τi ◦Wi → Tũi

Ck, we have

|W̃i − U∞| ≤ |W̃i −Wi| + |Wi − Ui| + |Ui − U∞|

≤ |τi − id| |Ui| + γi + |Ui − U∞|
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So, U∞ is the convergence value of W̃i, then U∞ maps B+
1 \Eδ to Tu∗Ck. Next,

since δ is arbitrary the claim holds.
Another last claim is that, U∞ must be a vector valued s-harmonic

function and Ui satisfy the Caccioppoli-type inequality with the same uniform
constant as ui. Thus, we can repeat the argument from Lemma 3.13 to say
that U∞ is also a minimizer and the convergence is strong in H1

s,loc(B+
1 ). We

have the following Caccioppoli-type inequality

Θs

(
U∞, x0, θ̃

)
≤ λΘs

(
U∞, x0, 2θ̃

)
+ C

λ2 Ws(U∞, x0, 2θ̃),

As in (RM2022, Lemma 5.1), we have that there is γ > 0 such that

Ws(U∞, x0, 2θ̃) = ψ(d, a)
(2θ̃)d+a+1

∫
B+

2θ̃

xa
d+1|U∞(x) − U∞|2 dx ≤ ψ(d, a)C(d)

(
2θ̃
)γ

So we obtain, by taking λ = θ̃γ/3, that

Θs

(
U∞, 0, θ̃

)
≤ Cθ̃γ/3,

where C is depending on (d, a). For i large enough, we obtain

Θs

(
Ui, 0, θ̃

)
= 1

2θ̃d+a−1

∫
B+

θ̃

xa
d+1|∇Ui(x)|2 dx < 1

4+2Cθ̃γ/3 ≤ 1
2 = 1

2 Θs(U∞, 0, 1)

for any θ̃ ≤ (8C)−3/γ, which contradicts (3-33). ■

Lemma 3.18 Let u ∈ H1
s (Rd+1

+ ;Ck) be a minimizing of Es(u,Ω). Suppose
B+

R (x0) is a half-ball such that R ≤ 1 and ∂0B+
R (x0) ⊂ Ω. There exists ε1 > 0,

θ1 ≥ 2 and C > 0 depending on d and ∥u∥L2(Ω) such that if

Θs (u, x0, R) ≤ ε1,

then
ρ1−d

∫
Bρ(y)

|∇u|2 dx ≤ C
(
ρ

r

)γ

r1−d
∫

Br(y)
|∇u|2 dx

on every Br(y) ⊂ B+
R(x0) such that y ∈ B+

R/3(x0) with yd+1 ≥ θ1r, 0 < ρ ≤ r

and some γ = γ
(
d, ∥u∥L2(Ω)

)
∈ (0, 1).

Proof. Let suppose that, Θs (u, x0, R) ≤ ε1 for an ε1 to be chosen and let ε like
in (R2018, Lemma 4.12); that’s ε such that, if v ∈ H1(Ω/Ck) minimizing of

Eg̃(u,B1) :=
∫

B1
|∇u|2g̃

√
det g̃ dx
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satisfying ∑
i,j,k

|∂kg̃i,j| < ε and
∫

B1
|∇v| dx ≤ ε,

then v is Hölder continuous in B1/2 and

|v(x1) − v(x2)| ≤ C|x1 − x2|γ, ∀x1, x2 ∈ B1/2, (3-37)

where ε, C and γ ∈ (0, 1) are depending on d and ∥u∥L2(Ω).
According to (R2018, Section 1), the Dirichlet energy Es(u,Ω) is the

same energy corresponding to the metric g = xbδ where b = 2a
d−1 and δ is the

Euclidean metric. Let g̃ = δ · (1 + ry−1
d+1xd+1)b = y−b

d+1g(rx+ y), then

Eg̃(v,B1) =
∫

B1
|∇v|2g̃

√
det g̃ dx = 1

2

∫
1/2

(1 + ry−1
d+1xd+1)a|∇v|2 dx

= r−1−d

2

∫
Br(y)

za
d+1

∣∣∣∣∇v (z − y

r

)∣∣∣∣2 dz.
There exists constants c and C depending only on d such that

c ≤ (1 + ry−1
d+1xd+1)b ≤ C

So we can choose C̃ independently of b such that

d+1∑
k=1

|∂k

(
1 + ry−1

d+1xd+1
)b

| = ry−1
d+1

∣∣∣1 + ry−1
d+1xd+1

∣∣∣b−1
≤ C̃ry−1

d+1,

so, ∑i,j,k |∂kg̃i,j| < ε by taking θ1 ≥ max{2, (d+ 1)C̃ε−1
1 }.

If we define ur,y(x) := u(rx + y) for x ∈ B1, ur,y ∈ H1(B1;Ck) and
noting that Eg̃(ur,y, B1) = r1−dEg̃(u,Br(y)) = Es(u,Br(y)), we have that ur,y

is Eg̃-minimizing, and from Lemma 3.16, there is C(d) such that
∫

B1
|∇ur,y(x)|2 dx = r1−d

∫
Br(y)

|∇u|2 ≤ C(d) Θs(u, x0, R) ≤ ε,

by taking ε1 < ε/C(d), then we can follow that vr,y is Hölder continuous in
B1/2.

Re-scaling implies that u is Hölder continuous in Br/2(y). From (R2018,
Lemma 4.14) , there is C(d, k) such that

sup
B1/2

|∇ur,y|2g̃ ≤ C(d, k)r−1−d
∫

B1
|∇ur,y|2g̃

√
det(g̃) dx

then, after a change of variables

r2 sup
Br/2

xa
d+1|∇u|2 ≤ C(d, k)r1−d

∫
Br(y)

xa
d+1|∇u|2g̃ dx
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Then, for any σ ∈ (0, 1/2]

(σr)1−d
∫

Bσr(y)
xa

d+1|∇u|2 dx ≤ C(d, k)σ2r1−d
∫

Br(y)
xa

d+1|∇u|2 dx

By calling C = 4
C(d,k) , we get

eaσrξ(σr)1−d Es

(
u,Bσr(y)

)
≤ 1
C
earξr1−d Es

(
u,Br(y)

)

Letting ω(ρ) := eaρξρ1−d Es

(
u,Bρ(y)

)
for ξ =

(
yd+1 − r

)−1
and ρ ≤ r.

In that case, Lemma 3.4 says that ω is non-decreasing, also it satisfies
ω(σr) ≤ C−1ω(r), from Lemma 3.15, there exists γ ∈ (0, 1) depending on
d and k such that

ω(ρ) ≤ C
(
ρ

r

)γ

ω(r)

that concludes the proof.
■

3.5
Proof of Theorem 1.3

Proof. [Proof of Theorem 1.3] Set ε = min(ε0, ε1), where ε0 and ε1 are the
numbers from Lemmas 3.17 and 3.18 respectively.

By the Lemma 3.17, there is θ0 ∈ (0, 1/4) depending on d, ∥u∥L2(Ω) and
a such that

Θs (u, y, θ0ρ) ≤ 1
2 Θs (u, y, ρ) ,

for every B+
ρ (y) ⊂ B+

R(x0) such that y ∈ BR/2(x0) ∩ ∂Rd+1
+ and ρ ≤ R/2, so

because the monotonicity of Θs(u, y, ρ) on ρ from Proposition 3.3, we get by
the Lemma 3.15 that

Θs (u, y, ρ) ≤ 2
(2ρ
R

)γ0

Θs (u, y, R/2)

for some γ0 ∈ (0, 1) depending on d, ∥u∥L2(Ω) and a.
Note that, if yd+1 = 0 then

∫
B+

ρ (y)
x−a

d+1 dx = ρ1+d−aψ(d, a),

where

ψ(d, a) =
∫

[0,π]d

sind−1(φ1) sind−2(φ2) . . . sin(φd−1)
(1 + d− a) cosa(φ1)

dφ1 dφ2 . . . dφn

Then
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ρ−2n
∫

B+
ρ (y)

x−a
d+1 dx

∫
B+

ρ (y)
xa

d+1|∇u|2 dx = ψ(d, a) Θs (u, y, ρ)

≤ 2γ0+1 ψ(d, a)
(
ρ

R

)γ0

Θs (u, y, R)
(3-38)

We also have, from Lemma 3.18, that there is θ1 ≥ 2, γ1 ∈ (0, 1) and
C > 0 depending on d and ∥u∥L∞(Ω) such that

ρ1−d
∫

Bρ(y)
|∇u|2 ≤ C

(
ρ

r

)γ1

r1−d
∫

Br(y)
|∇u|2, 0 ≤ ρ ≤ r

on any Br(y) ⊂ B+
R(x0) such that y ∈ B+

R/3(x0) with yd+1 ≥ θ1r.
In this case, note that

1
2 y

a
d+1 ≤ xa

d+1 ≤ 6 ya
d+1, x ∈ Bρ(y)

On the one hand

ρ−2n
∫

Bρ(y)
x−a

d+1 dx
∫

Bρ(y)
xa

d+1|∇u|2 dx ≤ 12 ρ1−d|B1|
∫

Bρ(y)
|∇u|2 dx

and, on the other hand

r1−d
∫

Br(y)
|∇u|2 dx ≤ C(d) Θs(u, x0, R)

because the Lemma 3.16, then

ρ−2n
∫

Bρ(y)
x−a

d+1 dx
∫

Bρ(y)
xa

d+1|∇u|2 dx ≤ C1

(
ρ

R

)γ1

Θs(u, x0, R) (3-39)

where
C1 = 12 |B1|C(d)

(
R

r

)γ1

is depending on d and ∥u∥L2(Ω).
Note that, by Hölder’s Inequality, and taking γ = 1

2 min(γ1, γ2), the
equations (3-38) and (3-39) produce

ρ−d
∫

B
|∇u| ≤

(
ρ−2n

∫
B
x−a

d+1 dx
∫

B
xa

d+1|∇u|2 dx
)1/2

≤ C(d, a) Θs(u, x0, R) 1
2

(
ρ

r

)γ

,

where B = B+
ρ (y) ⊂ B+

R(x0) such that y ∈ Bθ2R(x0) ∩ ∂Rd+1
+ with ρ ≤ θ2R or

B = Bρ(y) ⊂ B+
R(x0) such that y ∈ B+

θ2R(x0) with yd+1 ≥ θ1ρ.
The Lemma 3.14 and Remark 4 conclude the proof. ■
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